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ABSTRACT
Recent years have witnessed an increasing threat from kernel
rootkits. A common feature of such attack is hiding mali-
cious objects to conceal their presence, including processes,
sockets, and kernel modules. Scanning memory with object
signatures to detect the stealthy rootkit has been proven to
be a powerful approach only when it is hard for adversaries
to evade. However, it is difficult, if not impossible, to select
fields from a single data structure as robust signatures with
traditional techniques. In this paper, we propose the con-
cepts of inter-structure signature and imported signature,
and present techniques to detect stealthy malware based
on these concepts. The key idea is to use cross-reference
relationships of multiple data structures as signatures to
detect stealthy malware, and to import some extra infor-
mation into regions attached to target data structures as
signatures. We have inferred four invariants as signatures
to detect hidden processes, sockets, and kernel modules in
Linux respectively and implemented a prototype detection
system called DeepScanner. Meanwhile, we have also devel-
oped a hypervisor-based monitor to protect imported signa-
tures. Our experimental result shows that our DeepScanner
can effectively and efficiently detect stealthy objects hidden
by seven real-world rootkits without any false positives and
false negatives, and an adversary can hardly evade Deep-
Scanner if he/she does not break the normal functions of
target objects and the system.
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1. INTRODUCTION
Kernel mode rootkits have been proven to be a significant

threat to computer security. They hide some system object-
s such as processes, sockets and kernel modules to conceal
their presence on a victim host. The usual stealth techniques
employed by rootkits include Kernel Object Hooking (KO-
H) and Direct Kernel Object Manipulation (DKOM). KO-
H rootkits hijack kernel control flow while DKOM rootkits
directly modify kernel data objects. For example, the hp
rootkit unlinks the target process from the task list main-
tained by Linux kernel to prevent it from being discovered
with utility ps.

One way to detect hidden objects is to scan kernel mem-
ory with signatures to seek the data structures of processes,
sockets, and kernel modules, and compare an object list in-
ferred from these data structures with the output of the
system standard utility tools, such as ps, netstat, and lsmod.
When an object is found in the scan results but not in the
output of utility tools, it means that a possible stealthy mal-
ware is detected. Some detection tools and forensic anal-
ysis tools have been implemented to scan kernel memory
using signatures to detect hidden objects [3][8][9][21][23].
Signature-based scanning can be used in online and offline
forensic.

The signature-based scan method can only be effective if it
is difficult for adversaries to evade. Unfortunately, some sig-
natures employed by detection tools can easily be evaded by
modifying some fields of object data structures. For exam-
ple, a signature used by KSTAT [3] to detect hidden kernel
modules is that the value of the first 4 bytes of the target
memory area (the size of struct field of module structure) is
equal to the size of the module data structure. Adversaries
can set the value of size of struct field to another value (e.g.,
setting it to zero), to conceal rootkit LKM (Loadable Kernel
Module) from KSTAT detection. Furthermore, the value of
this field is irrelevant to the operations of LKMs, the code
and data of a hidden kernel module can be still correctly
accessed after modifying size of struct field.

A natural question is that which fields of a target data
structure can be used as scanning signatures to effective-
ly detect stealthy malware and difficult to be evaded. The
fields chosen as signatures should correlate closely to the sys-
tem operations. Any attempting to modify these values will
lead functions of objects to fail or the operating system to
crash. Thus, adversaries will not want to modify these fields
to avoid losing the control of hidden objects or the victim
system. Take the processes as an example, process hiding
is a common feature of kernel rootkits, a kernel rootkit may
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be employed to hide the presence of a wide variety of user-
space malware. With regards to this, Dolan-Gavitt et al.
[12] proposed an automated fuzzing technique for generat-
ing robust signatures for kernel data structures of processes
in Windows. Some constraints are found for robust signa-
tures in the EPROCESS data structure. They can be used
by a scanner to detect hidden processes. However, there stil-
l are two obstacles to obtaining robust signatures for some
security-critical kernel data structures.
First, the fields relevant to the correct operations of a

target kernel data structure may not be able to act as signa-
tures because it is difficult to distinguish the target kernel
structure from memory based on these fields. For example,
the socket data structure in Linux kernel has several pointer
fields, such as ops and file. Modifying these fields will result
in communication failure of sockets. But these fields point to
some dynamic memory areas rather than hold specific con-
stants. It is impossible to accurately find socket structures
by scanning based on these fields.
Second, all fields of structures of some passive kernel ob-

jects are hardly relevant to system operations. The opera-
tions of system and objects still are normal even after mod-
ifying them arbitrarily. For example, the main purpose of
the Linux kernel module data structure is providing some
operation handles and information for unloading LKM. Ac-
cording to our experiments, the codes imported by an LKM
still execute correctly even after setting all fields of its mod-
ule structure to zero or any other arbitrary value.
An elaborate scanner should/can discover the hidden sock-

ets and kernel modules and resist possible evasion tech-
niques. The above discussion shows that it is difficult to
use fields limited in a single kernel data structure (intra-
structure) as scan signatures to detect hidden objects when
facing skilled adversaries. However, traditional approaches
generate signatures commonly from the intra-structure view
and cannot provide effective detection capability to some
critical kernel objects, such as sockets and kernel modules.
To address the above challenges, we propose the concept-

s of inter-structure signature and imported signature and
present an approach to detect stealthy malware based on
them. The key idea is to use the cross-reference relation-
ships of target data structure and other related data struc-
tures as signatures to detect the hidden objects mentioned
in the first obstacle, and to import some extra information
into regions attached to target data structures as signatures
to detect the hidden objects mentioned in the second obsta-
cle. According to these concepts, we can either infer some
invariants from multiple related data structures or introduce
new invariants as robust signatures. With these signatures,
a scanner can effectively detect some stealthy malware that
can hardly be discovered with prior techniques. In this pa-
per, we construct four invariants to detect hidden process,
socket, and kernel module in Linux. One of them is derived
from some imported information in the text section of k-
ernel module to reverse search module structures; the other
three reflect some cross-reference relationships of task struct,
socket, and related data structures to recognize process and
socket objects respectively.
It is important to note that the imported signatures should

be protected to prevent attacker modifying them to evade
scanning. The hardware only provides page-level protection.
But Linux doesn’t page-align the sections of a kernel module
and cannot set appropriate page access permissions to them

when loading modules. Consequently, the text section of a
kernel module is still writeable. More seriously, even after
setting the text section to read-only, a kernel mode rootkit
can reset it to writeable and modify its content. To protect
the imported signatures, we add a new page, called signature
page, to store the tag data and protect it by a monitor in
a virtual machine hypervisor XEN [7]. The signature page
will be allocated as the first page of text section and be set
to read-only. Any attempts to modify its access permissions
will be trapped into hypervisor, and the monitor will deny
the requests to set access permissions of signature pages.

A prototype system called DeepScanner is implemented
to detect stealthy malware in Linux. The essential function
of DeepScanner is enumerating all processes, sockets and k-
ernel modules in the system by using above four invariants
as signatures to scan kernel memory. Our experiments show
that DeepScanner can effectively detect all stealthy process-
es, sockets, and kernel modules hidden by real-world rootkits
without false positives or false negatives. Besides, we also
implement an experiment rootkit to imitate evasion attack-
s by modifying the fields related to signatures. Our works
demonstrate that rootkits cannot evade DeepScanner with-
out breaking the normal functions of target objects and the
operating system.

The rest of this paper is organized as follows. Section 2
describes related works. Section 3 presents the concepts of
inter-structure and imported signatures. Section 4 describes
the implementation of prototype system. Section 5 presents
the experiments. Section 6 discusses the limitations and
future work, and Section 7 concludes this paper.

2. RELATED WORKS
Recently, a large number of studies pay much attention to

the detection of rootkits. Since almost all rootkits possess
the nature of hiding themselves, it is a reasonable way to
detect them by digging the hidden objects. The cross-view
based detection is a simple but valid technique which de-
tects hidden entities via comparing the differences between
untrusted view collecting from high-level and trusted view
collecting from low-level. This notion is initially proposed
by Wang et al. in their Strider GhostBuster system [25].

The key factor and primary difficulty of this method is the
way to get the trusted view. Several approaches have been
proposed to address it. For example, Klister [20] collects all
existing processes from scheduler’s thread list rather than
the system-wide process list. Petroni et al. [17] put forward
an architecture which check the semantic integrity violations
between the All-Tasks linked-list and Running-Tasks linked-
list in Linux. But unfortunately, an evasion for this kind of
detection has been demonstrated, which bypasses detection
via replacing the OS scheduler with a modified copy [1].

Another attempt to obtain the trusted view is memory
searching. Due to the fact that every entity has its correl-
ative kernel data structure maintained by operating system
which indicates its existence, it is a feasible way to find all
existing entities via locating them in memory with the fea-
tures of specific data structures. Such kinds of kernel mem-
ory scanning tools have been proposed by some researchers
[3][8][9][21][23]. However, the signatures used by these tools
are almost brittle and non-essential that making them easy
to be evaded, even by simply modifying some bits of the
data structure without preventing the entity from working
correctly [24].
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Dolan-Gavitt et al. [12] developed a novel method for
systematically selecting features from a kernel data struc-
ture that can be used to create robust signatures with the
support of fuzzing technique. Attempts to evade this kind
of signatures by modifying the data structure contents will
cause the OS to consider the object invalid. Their efforts
show that signature based memory scanning is an effective
and unfailing way, and it is possible to find out some ro-
bust signatures that are infeasible for attackers to modify.
However, selecting candidate signatures is limited in a single
data structure in their method, such as ”value equals X” or
”value is between X and Y”. Consequently, this method can-
not discover the inter-structure features as signatures which
are proven to be indispensable to detect some objects by
our research. Based on our observations and experiments in
section 3.1, we can find that it is impossible to generate a
feasible robust intra-structure signature for some important
system objects, such as socket objects in Linux kernel.
Carbone et al. proposed KOP [10] which involves building

a global points-to graph for kernel memory mapping and k-
ernel integrity checking. The output of KOP’s memory anal-
ysis component is an object graph whose nodes are instances
of objects in the memory snapshot and edges are the pointers
connecting these objects. Given an object type (e.g., pro-
cess), a corresponding trusted view can be obtained from
the list of all the objects of that type found by KOP in a
memory snapshot. However, this method requires that data
structure instances be reachable starting from the root(s) of
the graph. The path from root(s) to target objects may be
cut by adversaries without breaking the normal functions
of target objects. In a latest research, Lin et al. devel-
oped a novel approach [16], called SigGraph, to generate
graph-based signatures by a data structure definition ex-
tractor and a dynamic profile. Unlike KOP, SigGraph does
not require the object reachability and hence supports brute
force memory scanning that can start at any kernel memory
address. These two methods can automatically derive some
useful information for detecting malwares by employing stat-
ic analysis technique. Compared with them, our method
is lightweight and gives special consideration to preventing
possible evasion attacks.
Baliga et al. [6] presented an approach to automatically

detect rootkits and implemented a tool Gibraltar. Their key
idea is to externally observe the execution of the kernel dur-
ing a training period and hypothesize invariants on kernel
data structures. These invariants are used as specifications
of data structure during an enforcement phase; violation of
these invariants indicates the presence of a rootkit. Howev-
er, this approach doesn’t take into account some important
attack methods of rootkits, such as hiding sockets and ker-
nel modules. Especially, due to the function-independence
of fields in the kernel module data structure (will be demon-
strated in section 3.2), it may be impossible to infer an in-
variant for kernel modules by observing the execution of the
kernel.
HookFinder [28] and HookMap [27] focus on identifying

and extracting hooks placed by rootkits. HookFinder per-
forms impact analysis using dynamic tainting to identify
hooks placed by a rootkit in the kernel execution paths.
HookMap uses a more elaborate method of identifying all
potential hooks in the execution path of kernel code that
is induced by the execution of Linux utility programs such
as ls, ps, and netstat in RedHat Fedora Core 5. HookMap
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Figure 1: Signature-based scanning.

found that there exist 35 kernel hooks in the kernel-side
execution path of ls that can be potentially hijacked for ma-
nipulation. Similarly, there are 85 kernel hooks for ps and 51
kernel hooks for netstat, which can be respectively hooked
for hiding processes and network activities. It is tedious to
detect potential malicious attacks by monitoring so many
hook points.

File-signature based detection is a classical method in the
area of virus detection, which has repeatedly been proposed
to identify particular classes of security threats. Some rootk-
it detectors [2][5] employ this method to scan system files for
a sequence of bytes that comprise a fingerprint which is u-
nique to a particular rootkit. This method is simple and
effective. But due to its dependence on the prior knowl-
edge of the known malware, it lacks of the ability to defend
against unknown or mutative malwares.

Another area of related work is using virtual machine
monitor (VMM) to provide a high resistance to attacks from
inside the system. The advantage of VMM-based detection
is that it has the higher privilege over kernel-targeted mal-
wares, which the traditional host-based anti-malware sys-
tems limit in. Since Garfinkel et al. [13] introduced the
VMM-based intrusion detection system and VM introspec-
tion technique, it is widely adopted by researchers to detect
and analyze intrusions. In some works [19][22], VMM is used
to guarantee the integrity of executed kernel code. This pre-
vention technique monitors the execution of kernel code in
the hypervisor level, and only allows the authorized code to
be run in the kernel’s address space. Besides, some research-
es introduce the cross-view based detection into hypervisor
level. VMwatcher [14] captures a process when the control-
register CR3 changes, that means it could only discover the
process at the moment it enters running state, and could
not gain the information of all the existing processes at a
time. Lycosid [15] uses statistical inference techniques to
obtain the trusted view. Due to the limitation of statistical
method, the low-level view Lycosid gets is just more reliable
but not accurate.

VMM technique is also used to protect some essential ker-
nel data. Rhee et al. [18] implemented a system to monitor
kernel memory access using VMM-based policies in QEMU
[4], adopting memory access control in the hypervisor lev-
el to protect the essential kernel data. Wang et al. [26]
relocated some important kernel hooks to a dedicated page-
aligned memory space and then regulate accesses to them
with a monitor in XEN hypervisor. In this paper, we also
employ VMM technique to protect the integrity of imported
signatures.

3. METHODOLOGY
The process of the signature-based scanning method is
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shown in Figure 1. In the first place, a scanner fetches a
block of memory from kernel memory pool according to a
size frame of target object data structure. Then, the scanner
will check whether the content of the memory block matches
a signature. If so, the memory block will be regarded as a
desired object data structure, and the information about the
corresponding object can be extracted from it.
To reach the goal, scanning signatures must meet the fol-

lowing two requirements:

1) They must have enough discriminating power to dis-
tinguish object data structures without high false pos-
itives.

2) It is impossible for adversaries to evade them without
breaking the functions of target objects and operating
system.

An effective signature must meet both of the above two
requirements. The fields that only meet one of them cannot
act as an effective signature. For example, there are many
pointer fields in Linux kernel data structures; they point
to some operation handles or other data structures. These
fields are commonly closely related to the functions of their
host objects. Attempting to modify them will break the nor-
mal operations of the host objects or crash the whole sys-
tem. However, the values of these pointers are variable with
regards to different object states or kernel versions. The
only invariant can be deduced from them is that the values
of these pointers are kernel-space addresses. Based on the
property, a scanner cannot obtain desired data structures
without high false positives. On the contrary, the type, size,
and state fields of kernel data structures are often compar-
atively static. For example, the state field of the Linux pro-
cess descriptor (task struct) describes the current condition
of a process, and it may possesses one of five possible flags
(TASK INTERRUPTIBLE, TASK UNINTERRUPTIBLE,
TASK RUNNING, TASK STOPPED and TASK ZOMBIE)
to indicate the process’s state. As another example, the
size of struct field of Linux module structure holds the size
of the data structure. The invariants deduced from these
fields can effectively identify specific kernel data structures.
But, adversaries can modify the values of these fields to e-
vade scanning without affecting the normal operations of
system.
In the rest of this section, we take Linux kernel 2.6 as ex-

ample to describe two new kinds of signatures and give four
invariants to detect stealthy malware. Because some real-
world rootkits employ version-dependent attack techniques,
they cannot work in the newest version kernel. Without
loss of generality, we choose kernel 2.6.9 (Redhat AS4) as
the target platform.

3.1 Inter-structure Signatures
Not every kernel data structure has ideal fields meeting

the above two requirements at the same time. To some
kernel data structures, we cannot deduce effective signatures
from them directly. To this end, we try discover some cross-
reference relationships to generate robust signatures.

3.1.1 Sockets

Sockets are a common target for attackers to hide to con-
ceal malicious communications. In Linux, the socket data
structure is used to describe network socket objects. As

struct socket

{

        socket_state            state; 

        unsigned long           flags; 

        struct proto_ops        *ops; 

        struct fasync_struct    *fasync_list; 

        struct file             *file; 

        struct sock             *sk; 

        wait_queue_head_t       wait; 

        short                   type; 

        unsigned char           passcred; 

};

(a)

struct socket_alloc 

{

struct socket socket; 

struct inode vfs_inode; 

};

(b)

Figure 2: Linux socket and socket alloc structure.

shown in Figure 2 (a), the socket data structure of Linux
kernel 2.6.9 is very simple. It consists of nine fields. Among
them, state, flags, type, and passcred fields meet the first
requirement but do not meet the second one. We can do
a simple experiment to demonstrate this. An experimental
LKM is designed to clear these fields of a connected SSH
socket data structure. After clearing them, we can still ac-
cess a remote server correctly via the SSH connection. On
the contrary, ops, fasync list, file, sk, and wait fields meet
the second requirement but not the first.

According to the above analysis, we can see that no appro-
priate fields can act as signatures in the socket data struc-
ture. In other words, it is impossible to generate an effective
signature from a single data structure (intra-structure) for
scanning socket objects. We need to extend the scope of
choice to find an effective signature.

In Linux kernel, there are many pointer fields in kernel
data structures, which point to some operation handles or
other data structures. When a pointer field of a data struc-
ture points to a related data structure; a pointer field of
the related data structure may also point to the source data
structure directly or indirectly. These fields construct a kind
of cross-reference relationship of related data structures. If
the cross-reference relationship reflects an invariant about
target objects that satisfies both of the two requirements, it
can be used as an effective signature. Compared with the
signatures from fields in a single data structure, this kind of
signature involves multiple related data structures. We call
it as inter-structure signature.

As shown in Figure 2 (b), in Linux kernel 2.6.9, a socket
data structure exists as a field of socket alloc data struc-
ture. The socket alloc data structure is an item of a cache
that stores pairs of socket and its virtual file system inode
(vfs inode).

With regard to the socket data structure, its ops, file, sk,
fasync list, and wait fields are used to point to some relat-
ed data structures. Among them, the file field points to a
file descriptor (file). The file descriptor is an interface for
applications to manipulate sockets. In a file data structure,
a pointer field f dentry points to a dentry data structure.
Subsequently, a field d inode of the dentry data structure
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Figure 3: A relationship of multiple socket related
data structures.

Invariant 1: for a socket_alloc data structure sa:

(sa.socket)->file->f_dentry->d_inode points to sa.vfs_inode

Figure 4: Invariant for the socket alloc data struc-
ture.

should point to the vfs inode field of a socket alloc data
structure that consists of the source socket data structure
and its virtual file system inode. The relationship of above
data structures is shown in Figure 3. An invariant shown in
Figure 4 can be inferred as a signature from the relationship.
Using the above invariant, we can enumerate all socket

objects in a target Linux system. At the first step, a scan-
ner will search kernel cache memory to get all socket alloc
data structures based on the invariant. Then, a socket data
structure can be easily collected as a field of the socket alloc
data structure.
Although we take the socket data structure as an example

to introduce inter-structure signatures, we are sure that the
concept can be applied to other data structures.

3.1.2 Processes

In Linux kernel, the task struct data structure represents
a process of system. The task struct data structure is a
relatively complex data structure and contains many fields.

task_struct 

thread_info 

thread_info 

task

Process kernel stack

Figure 5: A relationship between the task struct and
thread info data structures.

thread_info data structures. 

Invariant 2: for a task_struct data structure t:

(t.thread_info)->task points to t

Or for a thread_info data structure th:

(th.task)->thread_info points to th

Figure 6: Invariant for the task struct and
thread info data structures.

Invariant 3: for each socket_alloc data structure sa, there 

exist a task_struct data structure t and a file data structure f,

such that: 

f  (t.files)->fd_array, and 

(f.f_dentry)->d_inode points to sa.vfs_inode, and 

(sa.socket)->file points to f

Figure 7: Invariant for the socket alloc data struc-
ture based on the relationship between processes
and sockets.

However, there are only a few fields can be used to iden-
tify it, such as state and pids. Unfortunately, these fields
do not meet the second requirement, i.e., they can be modi-
fied arbitrarily without breaking the operations of the target
process. We design an experimental LKM to modify these
field of a task struct data structure to invalid values. After
modifying them, the target process still run correctly.

Similar to socket objects, the process objects can be ex-
plored using an inter-structure signature. As shown in Fig-
ure 5, there is a thread info data structure stored in the ker-
nel space stack of the process in Linux kernel 2.6.9; the task
field of the data structure is a pointer to the process’s actual
task struct data structure. At the same time, the thread info
pointer field of a task struct data structure points to its
thread info data structure conversely. The cross-reference
relationship is closely related to the operations of processes;
breaking it will lead to system crash. On the other hand, us-
ing the relationship can effectively identify task struct data
structures. Thus, we can infer an invariant shown in Figure
6 for scanning process objects.

During scanning, scanner can fetch all possible process k-
ernel stack memory block and check whether its end part
matches the invariant about thread info. If it does, the cor-
responding taks struct data structure can be obtained from
its task pointer.

After getting all task struct data structures, there is an-
other way to deduce all socket data structures. In Linux
kernel, a socket usually belongs to a process as an open file.
The files field of task struct is a pointer to a struct files da-
ta structure used to store open files information. We can
reference an open file via a file descriptor array (fd array)
in struct files. Based on Invariant 1, we can get another
invariant about socket objects.

A scanner can collect all open file descriptors from ob-
tained task struct list and check one by one using Invariant
3. If a socket alloc data structure can be deduced from a file
descriptor, the scanner will find a possible socket object.
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Figure 8: An imported signature for the module data
structure.

Invariant 4: for each module data structure m, there exists a 

signature page p, such that: 

p contains a DTS, and 

p.RP points to m

Figure 9: Invariant for the module data structure.

3.2 Imported Signatures
For some objects, all fields of their data structures are

hardly relevant to their functions or operations of the whole
system. The related operations still are normal even after
all fields are modified arbitrarily.
In general, kernel mode rootkits are implemented as kernel

modules (e.g., a device driver) and loaded into kernel space
of operating system in various ways. The most important
task of kernel mode rootkits is to hide themselves. To this
end, an effective scanner should be able to discover hidden
kernel modules. In Linux, the kernel module data structure
is used to represent a loaded LKM. Unfortunately, all fields
of the module data structure are independent of its LKM
function except unloading. After a module being loaded,
the values of all fields of its data structure are insignificant
to executing its code or accessing its data.
We do an experiment to demonstrate the function-indepen

dence of fields of the module data structure. First, we load
an LKM which contains two functions: mygetsid () andmod-
ifymyself () and a char array mystring. The mygetsid func-
tion will hook the getsid system call and output mystring
to system log; the modifymyself function is used to set the
memory block of the module data structure to zero. Second,
we will call the modifymyself function to clear the module
data structure. Final, we will call getsid system call from a
user space application to trigger the mygetsid function. We
can examine system log to determine whether the code and
data of kernel module can be executed or accessed correct-
ly after related module data structure being cleared. In the
experiment, we can observe that the correct contents of mys-
tring are output by mygetsid function to system log. The
result of the experiment proves that modifying any field of
a module data structure cannot break the normal functions
of corresponding LKM.

According to the above experiment results, it is confirmed
that no fields of the module data structure can be used as
either an effective signature or a part of an inter-structure
signature. To detect hidden LKMs in Linux, we need intro-
duce some extra information into memory regions attached
to module structures as an effective signature. We call this
kind of extra information as imported tag.

Adding some distinctive data in the module data structure
is a natural and direct way to import signatures. However,
this way is not robust enough to counter evasion attacks.
Essentially, the imported tags are the same with those orig-
inal fields from the viewpoint of attackers. Adversaries can
trivially evade this kind of signatures by modifying the im-
ported tags to some malformed values. Especially, a kernel
mode rootkit, as a part of OS kernel, has enough power to do
this. A possible improvement of this way is relating the im-
ported tags with some elementary functions of LKMs, e.g.,
calling the code provided by LKM. As results, adversaries
tampering with the imported tags will break the elementary
functions of LKMs or lead to system crash. But it is very
troublesome to change the operation logic of the operating
system kernel. Besides, the change to kernel is platform-
dependent.

A more feasible choice is to protect the imported tags
from being modified. Unfortunately, this kind of protection
requires byte-level granularity while modern hardware plat-
forms can only provide page-level protection. The tags in a
data structure will be co-located together with original fields
that may be written during the lifecycle of target objects.
Because they may be located in the same page, it is improp-
er and unadvisable to protect imported tags and writable
original fields with the same access control permission (read
only).

To bridge the protection granularity gap, we can place
the imported tags to a dedicated page-aligned memory area
and co-locate them together with some data of the same
nature. Consequently, the imported tags can be protected
from being tampered based on hardware protection mech-
anism. Some identification information can be introduced
in the tags to identify and refer target objects, and can be
used as an effective signature. We call these identification
information as imported signature.

In Linux kernel, the code and data of an LKM will be load-
ed into some kernel space memory. They can be referenced
using the module core field of the module data structure.
The text section of LKM is an optional place to store the
imported tags. It is a natural way to protect imported tags
and the code of LKM from being written. But it will incur a
code relocation problem due to the effect to the layout of the
code. To avoid the troublesome code relocating, we add a
new page prior to the text section to place the imported tags
when loading an LKM. This page will be set to read-only
to avoid malicious tampering. We call the page as signature
page. As shown in Figure 8, a distinctive tag for scanning
(DTS) and a pointer to reference corresponding module data
structure (RP) are stored in the page. Besides, some static
fields of the module data structure (SF) are also stored to
check the integrity of the data structure. Accordingly, we
can infer an invariant shown in Figure 9 for scanning module
objects.

Scanner can traverse the kernel page memory to get the
information via checking whether there is a DTS in current
memory page. A page containing DTS will be regarded as a
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Figure 10: An imported signature for the module
data structure.

signature page, which corresponds to a module data struc-
ture. Scanner can get the information about the module via
the RP pointer in the signature page and further check the
integrity of the of the module with SF.

3.3 Signatures for Linux 2.4
Because some rootkits are aimed at Linux 2.4, we also

construct corresponding invariants for Linux 2.4.18.
The signatures for Linux 2.4.18 are similar to the above

signatures. But for Linux 2.4.18, the task struct data struc-
tures are directly allocated in the process stack and there is
not a thread info data structure in kernel. For this reason,
we use an imported signature to detect hidden processes on
Linux 2.4.18 platform. The related invariant is similar to
Invariant 4.

4. IMPLEMENTATION
To evaluate the usefulness of our approach, we implement-

ed a prototype system DeepScanner to detect the stealthy
malware in Linux. The main purpose of DeepScanner is to
demonstrate the effectiveness of inter-structure and import-
ed signatures. For the sake of convenience, DeepScanner is
currently implemented as an LKM and a user mode GUI
console. DeepScanner LKM is responsible for scanning ker-
nel memory and reporting results to the console. The con-
sole is used to manage scanning operations, collect various
results, and make cross-view comparison.
As shown in Figure 10, DeepScanner uses cross-view tech-

nique to detect the hidden objects. First, DeepScanner tra-
verses target kernel memory and enumerating all processes,
sockets and modules according to above 4 invariants. Sec-
ond, it will collect the output of system utilities, including
ps, netstat, and lsmod. Finally, DeepScanner will compare
the two results of different views. If an object is found in the
scanner view but not in the utility view, it means a possible
stealthy malware is detected. Besides, because the imported
signature is the base to detect hidden modules, we also im-
plement a hypervisor based monitor to protect the signature
page.

In the rest of this section, we will describe three kinds of
objects detection in detail based on Linux 2.6.9 platform.

4.1 Hidden Sockets
Socket hiding is a common goal for attackers to conceal

their malicious communications. DeepScanner can detect
hidden sockets based on Invariant 1 or Invariant 3.

When users only want to detect hidden sockets, DeepScan-
ner uses Invariant 1 as scanning signature. In Linux 2.6.9,
the socket alloc data structure is stored in a dedicated cache
allocated by calling kernel routine kmem cache alloc. To
speed up scanning, DeepScanner employs a directive scan-
ning strategy. It fetches candidate memory block by travers-
ing the kernel slab list with specific item size. DeepScan-
ner assume each candidate block cb as a socket alloc data
structure and check whether it satisfies Invariant 1, namely
check whether ((struct socket alloc)(cb)).vfs inode is point-
ed to by (((struct socket alloc)(cb)).socket)->file->f dentry-
>d inode. If it meets Invariant 1, ((struct socket alloc)(cb)).socket
will be the desired socket data structure.

On the other hand, if DeepScanner already have a process
descriptor list, it can easily enumerate all socket data struc-
tures via traversing the files field of each task struct data
structure according to Invariant 3.

4.2 Hidden Processes
Process hiding is often the primary feature of a kernel

mode rootkit. DeepScanner can detect hidden processes
based on Invariant 2. In addition, given a complete pro-
cesses list, DeepScanner can further get all sockets using
Invariant 3.

According to Invariant 2, there are two scanning modes
to choose: scan task struct directly or scan thread info and
then get task struct indirectly. To increase scanning speed,
DeepScanner choose the latter. Prior to the 2.6 kernel se-
ries, the task struct is stored at the end of the kernel stack
of each process. In kernel 2.6, the task struct is moved from
process kernel stack to a slab block. Instead, the thread info
is stored at the bottom of the kernel stack. On x86 platform,
the process kernel stack is 8kb-aligned (two pages), so the
address of the thread info data structure is also 8kb-align.
Based on this fact, DeepScanner check candidate memory
block 8kb by 8kb rather than byte by byte, namely one scan-
ning step of DeepScanner is 8kb. During detecting hidden
processes, DeepScanner can only fetches the memory block-
s begin with 8kb-aligned address, and check whether they
satisfy Invariant 2. This scanning mode dramatically speeds
up scanning. As a comparison, if scan task struct directly,
the scanner may need to traverse target memory space byte
by byte.

Given a thread info structure, getting the corresponding
task struct is very simple. It can be obtained by referencing
the memory area pointed by thread info.task. The informa-
tion in task struct data structures obtained by scanning will
construct a scanner view of system processes.

4.3 Hidden Kernel Modules
DeepScanner uses imported signatures to detect hidden

kernel modules. In order to introduce imported signatures,
we patch the module loading mechanism of Linux kernel.
During module loading, the patched kernel will add a new
page prior to the text section of module. The page will be
allocated in HIGHMEM region of kernel memory. Deep-
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Scanner check each page in HIGHMEM region to check
whether it contains a DTS. The DTS is an 8 bytes sequence
0x89c089db89c989d2 corresponding to a NOP instructions
segment (mov eax, eax ; mov ebx, ebx ; mov ecx, ecx ; mov edx,
edx). The NOP instruction sequence has enough discrim-
inability and normally doesn’t exist in the system memory
space according to our observations. Furthermore, it is fully
side-effect-free. According to our experiments, the sequence
can be used to unambiguously identify signature pages.
The RP part of a signature page is a pointer to corre-

sponding module data structure, and the SF part stores
some static fields of the module data structure, including
name, module core, syms, etc. After getting a signature
page, DeepScanner will get necessary information of a mod-
ule data structure via RP pointer and further check the in-
tegrity of the data structure via comparing it with SF.
A problem need to be considered is that attackers can

introduce noise by constructing some malformed imported
signature pages following our design, which may lead to false
positives. From the viewpoint of system security detection,
it is sure that the integrity of system has been compromised
when a scanner found a malformed signature. In other word-
s, the system has been intruded by attackers. Because a
primary goal of attackers is concealing their behaviors, we
think attackers don’t want to interfere security detection
mechanism by this way.
To DeepScanner, signature page protection is critical to

discover hidden kernel modules. It will be describe in fol-
lowing subsection.

4.4 Signature Page Protection
The integrity of signature pages determines the effective-

ness of hidden kernel module detection. It is not enough
for signature pages protection just only to set the signature
page to read-only in its page table entry (PTE). Kernel mod-
e rootkits can easily modify the PTE and set the signature
page to writable.
In this paper, we employ VMM technique to protect the

integrity of imported signature pages. We implement a mon-
itor in XEN hypervisor. Any attempts to modify the access
permissions of signature page will be trapped into the hyper-
visor. The monitor will terminate the operation to modify
the PTE of signature pages.
In XEN para-virtualization mode, a guest OS is not per-

mitted to modify its page tables directly, any update of page

Table 1: The Configurations of experiment environ-
ment.

Hardware Configuration
Processor Intel Core(TM2) T5600, 1.83GHz
RAM 2.0GB
Storage 60GB IDE

Hypervisor Configuration
Hypervisor Xen
Version 3.1.0

Host OS Configuration
OS Version Red Hat Enterprise Linux 5

Kernel Version 2.6.18
Xen supported Domain 0

Guest OS Configuration I
OS Version Red Hat Enterprise Linux 4

Kernel Version 2.6.9
Xen supported Paravirtualization Domain U

Guest OS Configuration II
OS Version Red Hat 7.3

Kernel Version 2.4.18
Xen supported HVM

tables will be trapped into hypervisor [11]. The function
ptwr do page fault will be called to handle the update oper-
ation when guest OS is in kernel mode. Based on the model,
we implement a protection monitor (PM) in XEN hypervi-
sor. It will intercept ptwr do page fault to check if the target
PTE to be updated to writeable corresponds to a signature
page. If so, the update operations will be terminated by
PM. As shown in Figure 11, to identify the signature pages
in hypervisor, we add a new hypercall do write protect page
to XEN. When a new signature page is created, system will
invoke do write protect page to notify PM and send the vir-
tual address of the related PTE to it. The PM maintains
a list to store the addresses of PTEs need to be protected.
With the support of the list, the PM can know which update
to PTE needs to be checked. Consequently, the signature
pages always are read only after being created.

In XEN full-virtualization (HVM) mode, Shadow Page
Table (SPT) is employed to manage the memory. A page
fault handler sh page fault is used to handle the page faults.
Mapping a guest OS page to a shadow page with differen-
t permissions will be trapped into the handler. Similar to
the case in para-virtualization, the system will invoke a new
hypercall do hvm write protect page to notify the PM that
a new signature page has been created, and PM will record
the address of PTE of the signature page. When a mapping
being trapped, PM will intercept sh page fault to check if
there is a different permission setting about the PTE of sig-
nature pages (writeable for guest OS pages while read-only
for shadow pages). If so, PM makes sure the physical pages
are marked read-only.

5. EVALUATION
In this section, we present our experiments and results. In

particular, we have conducted two sets of experiments. The
first set of experiments is to evaluate DeepScanner’s effec-
tiveness in detecting seven real-world rootkits. These rootk-
its cover the major stealth techniques (KOH and DKOM)
currently employed by malwares. DeepScanner turns out to
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Table 2: Effectiveness of DeepScanner in detecting 7 real-world rootkits.

Rootkit Kernal
Hidden Function

Stealth Techniques
Detection Result

process socket module process socket module
adore-0.42 Linux 2.4 Y Y Y DOH, DKOM

√ √ √

adore-ng-0.56 Linux 2.6 Y Y Y DOH, DKOM
√ √ √

knark-2.4.3 Linux 2.4 Y Y Y DOH, DKOM
√ √ √

wnps-0.26 Linux 2.6 Y Y Y DOH, DKOM
√ √ √

enyelkm-1.1.2 Linux 2.6 Y N Y DOH
√ √

hp-1.0.0 Linux 2.4 Y N N DKOM
√

modhide-1.0 Linux 2.4 N N Y DKOM
√

Figure 12: The Screenshot of the hidden process detection.

be effective in detecting them. We will discuss the detection
of the most classical rootkit adore-ng in details, and show
the detection results of all the rootkits in a table. The sec-
ond set of experiments is to evaluate DeepScanner’s ability
against evasion attacks. We develop an experimental rootkit
for evasion attacks based on adore-ng rootkit. The results
show that it could not evade DeepScanner without breaking
the normal functions of target objects and the system.
We perform our experiments in two versions of Linux k-

ernel (2.4.18 and 2.6.9) in order to test our approach with
more available rootkits. The detail configurations of our
experiment environment are listed in Table 1.

5.1 Real-world Rootkits Experiments
We have evaluated DeepScanner with 7 real-world Linux

rootkits shown in Table 2. These rootkits all have the func-
tion of hiding one or more kinds of system objects, including
processes, sockets and kernel modules. The major stealth
techniques (KOH and DKOM) were covered by these rootk-
its. DeepScanner successfully detected all stealthy objects
hidden by these rootkits via scanning system kernel memo-
ry with the four invariants discussed above. The remarkable
thing is that DeepScanner’s precision is perfect, it doesn’t
produce any false negatives or false positives. In the follow-
ing, we describe in detail our experiments with a classical
rootkit.

The adore-ng rootkit infects the kernel as an LKM. It has
the function of hiding processes, sockets and kernel modules.
The stealth technique it adopts to hide processes is KOH tar-
geting kernel function pointers proc root.proc iops->readdir
and proc root inode operations->loopup. The same way it
works to hide sockets targeting the kernel function pointer
proc net->get info. In addition, adore-ng employs DKOM
technique to hide kernel modules, it unlinks the target mod-
ule from the module list maintained by Linux kernel.

We use DeepScanner to detect the objects hidden by adore-
ng rootkit. The screenshot of the hidden process detection
is shown in Figure 12. We can observe that a calculator
process (PID: 5603) is still running even though that adore-
ng rootkit hides it. It cannot be found in the result of ps
utility while we can get it from the output of DeepScanner.
According to the cross-view technique, scanner could defi-
nitely draw a conclusion that the process with PID 5603 is
a hidden process. In DeepScanner console, hidden objects
will be shown at the top of the objects list and highlighted.

5.2 Performance
We measured two aspects of DeepScanner’s performance:

(a) detection time, i.e., the time taken to scan memory to
discover hidden objects; and (b) performance overhead, i.e.,
the overhead on the target system as a result of signature
pages protection.
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Detection Time. DeepScanner employs a directive scan-
ning strategy. DeepScanner only fetches candidate memory
block from specific parts of kernel memory space rather than
traversing the whole kernel memory byte by byte, i.e., it on-
ly checks the memory blocks in the slab list with specific
item size to find the socket alloc data structure, the memo-
ry blocks with 8kb-aligned start addresses to find thread info
data structure, and identifies imported signature pages page
by page. Consequently, the scanning of DeepScanner is very
fast, the time of scanning processes, sockets and kernel mod-
ules is no more than 1 second in the experiment environment.
Performance Overhead. Before enforcing the signature

pages protection, we use Unixbench to measure the perfor-
mance of the whole system. The final score is 94.2. After
install signature pages protection mechanism, the final score
is reduced to 93.4 (only fell less than 1%). The performance
overhead is negligible and acceptable completely.

5.3 Experiments for Evasion Attacks
In order to evaluate the DeepScanner’s ability against eva-

sion attacks, we implement an experimental rootkit based on
adore-ng. It makes evasion attacks by modifying the field-
s related to signatures. This set of experiments consists
of 4 parts. Each one attempts to evade the detection via
violating one of the four invariants used by DeepScanner.
The experiment results show that the rootkit cannot evade
DeepScanner without breaking the normal functions of tar-
get objects and the system.

1) Violation of Invariant 1.
The experimental rootkit attempts to evade hidden
socket detection by breaking the reference chain about
the socket alloc data structure. It does this via setting
any one link pointer field of the chain with another
arbitrary address value to break the original reference,
i.e., file, f dentry, or d inode pointer is set to an acces-
sible address different from original value. After doing
this, the connection becomes unstable and broken fi-
nally.

2) Violation of Invariant 2.
The experimental rootkit attempts to evade hidden
process detection by breaking the cross-reference rela-
tionship between a task struct data structure t and a
related thread info data structure th. It does so by set-
ting either (t.thread info)->task or (th.task)->thread info
to another value. As a result, system crashes immedi-
ately.

3) Violation of Invariant 3.
Similar to 1), the experimental rootkit attempts to e-
vade hidden socket detection by breaking the reference
relationship of a socket alloc data structure sa, a relat-
ed task struct data structure t, and a related file data
structure f. If it does so by pointing either socket-
related (t.files)->fd array [i ] or (f.f dentry)->d inode
to another place, the socket will be disconnected. If
it does so by modifying the (sa.socket)->file pointer,
the system will crash.

4) Violation of Invariant 4.
The experimental rootkit attempts to evade hidden
module detection by tampering the signature pages.
Due to all signature pages without write permission in

the guest OS level, directly modifying the content in
a signature page will incur a segmentation fault. Fur-
thermore, the experimental rootkit also attempts to
set the signature pages to writeable by modifying the
related PTE. Under the protection of the monitor de-
ployed in XEN hypervisor, any modification towards
the protected PTE is terminated and fails.

6. LIMITATIONS AND FUTURE WORK
The fundamental limitation of our approach is that the

signatures are concluded based on the manual analysis to
kernel data structures. Although there is a small number
of desired objects need to be analyzed, it is only feasible
for an open source OS, e.g., Linux. For a closed source OS,
like Windows, we need to develop an automatic technique
for signatures generation similar to [12][16]. In the future,
we want to introduce dynamic analysis to generate inter-
structure signatures for closed source OS. The fuzzing tech-
nique will be employed to explore the relationships between
multiple data structures.

Because the main purpose of DeepScanner is to demon-
strate the effectiveness of inter-structure signatures and im-
ported signatures, its detection mechanism is currently im-
plemented as an LKM. A limitation of DeepScanner is that
detection is enforced in target OS kernel. The detection may
be compromised by rootkits designed specifically to tamper
with the detection mechanisms. Cooperating with virtual
machine techniques, we can also develop an out-of-box scan-
ner. It is advisable that security mechanisms are deployed in
hypervisors so that they can be shielded from malicious at-
tacks coming from a guest virtual machine, even if the guest
operating system kernel is compromised. In the future, we’ll
port DeepScanner to hypervisor to counter possible attacks.

7. CONCULSIONS
Scanning memory for object signatures to detect stealthy

malwares has been proven to be a useful approach. It is
critical to construct robust scanning signatures for detec-
tion. Traditional approaches choose fields from a single data
structure to be scanning signatures. But, our analysis and
experiments prove that this way is limited or even impos-
sible as to some critical system object structures, e.g., the
module data structure in Linux kernel. In this paper, two
new concepts are introduced: inter-structure signature and
imported signature. Based on the two concepts, the space of
signatures is extended to involving relationships of multiple
data structures or importing artificial signatures rather than
being limited in a single data structure. In this paper, we
provide four invariants as signatures to detect hidden pro-
cesses, sockets, and kernel modules in Linux. Accordingly,
we implement a detection prototype system DeepScanner
and a hypervisor-based monitor to protect imported signa-
tures. The experiment results show that DeepScanner can
effectively and efficiently detect stealthy malwares and it can
also resist evasion attacks. Our works provide a new method
to construct robust signatures. The invariants presented in
this paper can be used immediately by applications to locate
processes, sockets and kernel modules in memory.
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