
Reference Hijacking: Patching, Protecting and Analyzing 
on Unmodified and Non-Rooted Android Devices 

 

Wei You
1,2

, Bin Liang
1,2,

*, Wenchang Shi
1,2

, Shuyang Zhu
1,2

, Peng Wang
1,2

, Sikefu Xie
1,2

      Xiangyu Zhang
3
 

1
Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE, Beijing, China 

2
School of Information, Renmin University of China, Beijing, China 

{youwei, liangb, wenchang, zhushuyang, pengwang, decadall}@ruc.edu.cn 
 

3
Department of Computer Science, Purdue University, Indiana, USA 

xyzhang@cs.purdue.edu 

 

ABSTRACT 

Many efforts have been paid to enhance the security of Android. 

However, less attention has been given to how to practically adopt 

the enhancements on off-the-shelf devices. In particular, securing 

Android devices often requires modifying their write-protected 

underlying system component files (especially the system libraries) 

by flashing or rooting devices, which is unacceptable in many 

realistic cases. In this paper, a novel technique, called reference 

hijacking, is presented to address the problem. By introducing a 

specially designed reset procedure, a new execution environment 

is constructed for the target application, in which the reference to 

the underlying system libraries will be redirected to the security-

enhanced alternatives. The technique can be applicable to both the 

Dalvik and Android Runtime (ART) environments and to almost 

all mainstream Android versions (2.x to 5.x). To demonstrate the 

capability of reference hijacking, we develop three prototype sys-

tems, PatchMan, ControlMan, and TaintMan, to enforce specific 

security enhancements, involving patching vulnerabilities, pro-

tecting inter-component communications, and performing dynam-

ic taint analysis for the target application. These three prototypes 

have been successfully deployed on a number of popular Android 

devices from different manufacturers, without modifying the un-

derlying system. The evaluation results show that they are effec-

tive and do not introduce noticeable overhead. They strongly sup-

port that reference hijacking can substantially improve the practi-

cability of many security enhancement efforts for Android. 

CCS Concepts 

• Systems security ➝ Operating systems security ➝ Mobile 

platform security. 

Keywords 

Android; Security enhancement; Practicability 

1. INTRODUCTION 
Android has become the most widely used mobile operating sys-

tem. It dominated the global smartphone market with an 83% 

share in Q2 of 2015 and continues to grow steadily [21]. At the 

same time, people become increasingly dependent on handheld 

devices for processing personal information and handling business 

affairs. To guarantee the security of devices is of great importance 

for end users. 

Over the past few years, many studies have been proposed to im-

prove the security of Android, such as patching security vulnera-

bilities [43, 50], extending the standard security model [44, 54], 

and analyzing malicious applications [38, 41]. These studies have 

brought great improvement to the security of Android. However, 

less attention has been given to the deployability of these security 

enhancements, which has a significant impact on their adoption. 

In fact, deploying security enhancements on off-the-shelf devices 

is not a trivial task. It is inevitable to modify the system compo-

nent files of the Android OS. In practice, when patching a vulner-

able system library, we need to replace it with a fixed alternative 

or rewrite it with patch code [43, 50]. Similarly, to enforce a cus-

tomized security policy, the additional security module often 

needs to be introduced into the system libraries of the Android 

framework [32, 37, 44, 54]. For analyzing malware, the analyst 

also needs to effectively inspect the execution of the system li-

braries in addition to the target applications themselves [38, 41, 

52]. However, Android has more stringent security restrictions 

than desktop platforms. The underlying system libraries are stored 

in special folders, which are only writable for the root user. In 

Android, root privilege is not granted to end users to avoid privi-

lege abuse. This poses an obstacle for deploying security en-

hancements. Without root privilege, it is impossible to rewrite or 

replace the original system libraries. 

To deploy security enhancements, most exiting studies employ the 

following two ways. The first way (employed by [38, 44]) is to 

integrate the Android source tree with security enforcement code, 

and compile the modified source code to a new system image for 

flashing into devices. It involves a complex series of steps, and is 

at the risk of bricking devices. The second way (employed by [43, 

50]) is to root devices and inject security enforcement code into 

the target application process. It compromises system integrity, 

and may cause severe hazard if the root privilege is abused [25]. 

In practice, these two ways are not acceptable for normal users. 

This substantially hinders the widespread adoption of many secu-

rity enhancements. 

It should be noted that a few attempts have been made to enforce 

application-wide security features without flashing or rooting 

devices. Aurasium [51] enforces a fine-grained permission policy. 

The global offset table (GOT) of the target application process is 

rewritten, such that calls to critical libc functions can be intercept-

ed and validated. Boxify [30] proposes a novel technique to en-

* Corresponding Author 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be hon-

ored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from Permissions@acm.org. 

ICSE '16, May 14-22, 2016, Austin, TX, USA 
© 2016 ACM. ISBN 978-1-4503-3900-1/16/05…$15.00 

DOI: http://dx.doi.org/10.1145/2884781.2884863 

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

   959



force privilege separation policies. Untrusted applications are 

securely encapsulated in an isolated sandbox, such that inter-

process communications and system calls of the untrusted applica-

tions can be mediated. Although these two approaches do not 

require modification of the underlying system, their capabilities 

are limited to enforcing function-call-level protection policies. It 

is very difficult, if not impossible, to enforce an in-depth security 

enhancement only by intercepting calls, such as completely re-

pairing a vulnerable system library or tracking the execution of an 

underlying function. Based on the above discussion, we can see 

that how to practically enforce in-depth security enhancements in 

the underlying system libraries without flashing or rooting devices 

remains an important open challenge. 

Our Approach. In this paper, we propose a novel technique, 

called reference hijacking, to conveniently introduce additional 

in-depth security features into underlying system libraries. Refer-

ence hijacking is mainly archived by a specially designed envi-

ronment reset procedure triggered when the target application is 

launched. The reset procedure reconstructs a new execution envi-

ronment for the target application, such that the system libraries 

can be loaded from a configurable location instead of the default 

folders. As a result, the reference of the target application to the 

underlying system libraries can be redirected to the security-

enhanced alternatives. In theory, the technique can be regarded as 

an inline reference monitoring (IRM) [39] based approach. Com-

pared with the existing IRM-based approaches [42, 51], our tech-

nique enables us to take full control over the reference of the tar-

get application to the underlying system libraries, rather than 

merely intercepting certain API calls. We evaluate the technique 

on prevalent off-the-shelf devices, involving almost all main-

stream Android versions from 2.x to 5.x, and covering both the 

Dalvik and Android Runtime (ART) environments. The evalua-

tion results show that the technique works well on all tested de-

vices, and only introduces small launch time delay (detailed in 

Section 2). 

To further demonstrate the capability of reference hijacking, we 

design and implement three prototype systems based on it for 

enforcing specific security enhancements to address three hot and 

important security issues of Android. The experiment results show 

that all of these three prototypes are effective and efficient, and 

can be directly deployed on the off-the-shelf Android devices. 

The first prototype, PatchMan, is to patch vulnerable underlying 

system libraries. Vulnerabilities pose serious security threats and 

should be patched as timely as possible. Unfortunately, Google 

adopts a controversial patch policy. Patches are provided prefer-

entially to the latest versions, while back-porting to the legacy 

versions is not promised and even refused [18]. Besides, many 

device manufactures only provide a limited support time window. 

Beyond the window, no further update will be provided even 

though those old devices are still widely used [23]. As a result, a 

large portion of devices in use contain critical vulnerabilities [13, 

20]. PatchMan provides a third-party patch mechanism for poorly-

supported devices. It allows organizations or end users to proac-

tively fix vulnerable devices by themselves. By leveraging refer-

ence hijacking, the target application can conveniently use the 

patched system libraries as the substitute of the vulnerable ones 

(detailed in Section 3).  

The second prototype, ControlMan, is to enforce a flexible access 

control policy on inter-component communications (ICCs). By 

default, Android enforces a permission-based security model to 

protect the ICC interfaces. However, this generic model is not 

completely suitable for some particular requirements. For example, 

a user may want to restrict ICCs of a target application, only al-

lowing the applications in the white-list to send/receive messages 

to/from the target application. This requirement is reasonable, but 

beyond the capability of the standard Android security model. 

ControlMan provides a more flexible access control model, which 

enables end users to regulate the incoming and outgoing ICC be-

haviors of a target application by specifying customized security 

policies. The access control model is implemented in the en-

hanced system libraries, which will be used to replace the original 

libraries for the target application via reference hijacking (detailed 

in Section 4). 

The third prototype, TaintMan, is to perform dynamic taint analy-

sis (DTA) [48] for malware detection. Due to the openness of 

application markets and the lack of effective vetting process, An-

droid accounts for 97% of all mobile malware [19]. Even in the 

official market, there still exist a considerable number of malware 

[33, 55]. Moreover, sophisticated adversaries have begun to em-

ploy anti-analysis technique to evade detection. Especially, some 

malware will deactivate their malicious logic if they perceive that 

they are executed in a monitored environment (such as an instru-

mented emulator) [49]. TaintMan enables analysts to analyze 

malware directly on a real device instead of an emulator, for cap-

turing the hidden malicious behaviors. In TaintMan, taint tracking 

code is instrumented into both the target application and the un-

derlying system libraries. With the help of reference hijacking, 

sensitive information flow involving the system libraries can also 

be effectively tracked and analyzed (detailed in Section 5). 

These three prototypes have successfully demonstrated that refer-

ence hijacking does provide a totally effective solution to enforc-

ing in-depth security enhancements for applications of interest on 

off-the-shelf devices. We believe that this study has made an im-

portant step to improve the practicability of a large body of securi-

ty enhancement efforts for Android. 

In summary, our two main contributions are the following. 

 We present reference hijacking, a practicable technique for 

introducing in-depth security enhancements without flashing 

or rooting Android devices. It has been shown to work well 

on both the Dalvik and ART runtime environments and on 

almost all mainstream Android versions (2.x to 5.x). 

 We develop three prototype systems to enforce specific 

security enhancements based on reference hijacking, involv-

ing patching vulnerabilities, enforcing ICC access control, 

and performing DTA analysis for the target application. 

These systems have been successfully deployed on popular 

devices from different manufacturers. The evaluation results 

show that they are effective and do not introduce noticeable 

system overhead. 

2. REFERENCE HIJACKING 

2.1 Approach Overview 
An Android application needs to reference the underlying system 

components to perform its logic by invoking their provided inter-

face methods. In general, the implementations of the underlying 

system components are stored in system library files, including 

system class libraries and native libraries. The execution envi-

ronment of an application determines the location from which it 

seeks and loads the system library files. In Android, all applica-

tion processes are forked from a special process called Zygote. It 

sets up an initialized execution environment for its child processes, 

in which the system library files will be loaded from designated 

system folders. 

960



The goal of reference hijacking is to take control over the refer-
ence of an application to the underlying system libraries, so that it 
can be redirected to the security-enhanced alternatives. As illus-
trated in Fig. 1, by default, the target application runs in the ini-
tialized execution environment, in which the target application 
references to the original system libraries. For example, in order 
to start an Activity, an application invokes Context.startActivity() 
provided by the system class library framework.jar loaded from 
the /system/framework/ folder. With reference hijacking, we can 
reconstruct a new execution environment for the target application, 
in which it will load framework.jar from a configurable location 
rather than the original folder. We can implement a security-
enhanced framework.jar to introduce extra security features (e.g., 
a security patch, an access control checking, or a taint tracking 
functionality) into Context.startActivity(), and let the target appli-
cation load the security-enhanced library file rather than the origi-
nal one. In this way, when the target application invokes Con-
text.startActivity(), the introduced security feature will take effect 
simultaneously. 
Reference hijacking is mainly achieved by a specially designed 
environment reset procedure. By modifying the startup process of 
an application, some additional operations are introduced to drive 
the application to restart with new environment variables (e.g., the 
library path). After restarting, the application will be executed in a 
new execution environment. To leverage reference hijacking, the 
target application should be adjusted. In particular, the application 
entry point will be rewritten with the code that invokes the envi-
ronment reset procedure. 
We generate the enhanced system libraries by either compiling the 
source code or directly rewriting the library files, depending on 
whether the target system libraries are open-source or not. The 
detailed steps for different security enhancement approaches are 
shown in Section 3 ~ 5 respectively. The generated system library 
files coexist with the original ones on the same device. They are 
placed in a specific folder that is readable but not writable for 
normal application processes. As such, the enhanced libraries can 
be securely shared by all applications of interest. 

2.2 Environment Reset Procedure 
In Android, the startup process of an application is under the con-
trol of the Activity Manager Service (AMS). AMS will create a 
new process for the target application by forking from Zygote 
when the first component of the application is activated. Besides, 
every application has an entry class, which is instantiated before 
any component of the application is launched. The default entry 
class is Application. An application can also declare a customized 
entry point class by inheriting the default Application class. 

Fig. 2 depicts the startup process of an application. First, a start-
Component request is sent to AMS with the information about the 
target application and the target component (Step 1). AMS then 
creates a new process for the target application by sending a 
startProcess request to Zygote (Step 2), making it fork a child 
process (Step 3). The forked process inherits the execution envi-
ronment from Zygote and starts an application thread (Step 4), 
which will send an attachApplication request to AMS (Step 5). In 
response, the information about the target application and the 
target component is sent to the forked process via two synchro-
nous messages (Step 6), which will be handled sequentially. Fi-
nally, the target application is started with its Application class 
being instantiated (Step 7), and the target component is launched 
(Step 8). In practice, manufactures often modify some aspects of 
Android. However, as a fundamental feature of Android, the ap-
plication startup process always remains unchanged. 

The environment reset procedure is invoked between Step 7 and 
Step 8. It is accomplished by a customized Application class 
RHApplication and an executable file RHZygote. RHApplication 
is used to store/resume necessary information and reset the current 
program state of the application process. RHZygote mimics the 
functionality of Zygote to construct a new execution environment. 
After Step 7 is finished, the RHApplication class is instantiated to 
perform Step a and Step b. Step a: store the target component 
information. The target component information will be discarded 
when the execution environment is reset. Hence, we store it in a 
temporary file. Step b: execute RHZygote. It is done by making a 
native exec() call to completely replace the current process with 
the RHZygote program. As such, the current program state of the 
target application is reset. Particularly, the reference of the target 
application to the original system libraries is cut off. The RHZy-
gote program performs Step c to Step e to prepare a new execu-
tion environment. Step c: set environment variables. Two envi-
ronment variables are set. One is BOOTCLASSPATH that specifies 
the security-enhanced system class libraries as default class paths. 
The other is LD_LIBRARY_PATH that specifies the location of the 
security-enhanced native libraries as the first search path of shared 
libraries. Step d: start a new runtime instance. The new runtime 
instance will load system class libraries and native libraries from 
the paths specified by the aforementioned environment variables. 

  

Target Application 
…… 
Context.startActivity() 
…… 

 

 

Reconstructed Environment Initialized Environment 

Target Application 
…… 
Context.startActivity() 
…… 

 

  
Original 
framework.jar 

 

  
Security-enhanced 
framework.jar 

 

Original 
framework.jar 

Figure 1. Reference Hijacking. 

pid

AMS Zygote

Application Process

2. startProcess()
3. fork()

startComponent
(AppInfo, CompInfo)1.

7. bindApplication(AppInfo)

8. launchComponent(CompInfo)

b. exec(RHZygote)
a. storeCompInfo(CompInfo)

i. CompInfo = loadCompInfo()

c. setEnvironmentVariables()

h.  bindApplication(AppInfo)

5. attachApplication()

BIND_APPLICATION (AppInfo)
LAUNCH_COMPONENT (CompInfo)

6.

f. attachApplication()

4. startAppThread()

d. restartRuntimeInstance()
e. restartAppThread()

g. BIND_APPLICATION (AppInfo)

Environment Reset Procedure 

Figure 2. Sequence diagram of the application startup pro-
cess. Additional steps introduced by the environment reset 
procedure are outlined with a dashed rectangle. 

961



Step e: restart an application thread. The restarted application 
thread will interact with AMS to reload the target application and 
instantiate the RHApplication class for a second time (Step f to 
Step h). At this time, RHApplication performs Step i to obtain the 
target component information from the temporary file. Finally, the 
target component will be launched for execution at Step 8. 

2.3 Adjusting the Target Application 
To make the target application invoke the environment reset pro-
cedure, we should adjust it to customize the RHApplication class 
as its entry class. The adjustment is automatically completed by a 
script tool written by us.  
For the applications that do not declare a customized entry class, 
the RHApplication class is introduced into them by leveraging 
Apktool [3], an open-source repackaging tool. The bytecode of the 
target application is disassembled into the SMALI [14] intermedi-
ate language files. The RHApplication class is also converted to a 
SMALI code snippet and added to the set of the intermediate files. 
In addition, the <application> tag of the manifest file is altered 
to specify RHApplication as the entry class. After repackaging all 
the related files, a new package of the target application will be 
ready. 
Some target applications may have already declared their own 
entry class. In this case, we will trace the inheritance of this class 
until finding the root base class, which directly inherits from the 
Application class. We modify the original class hierarchy, making 
the root base class inherit from the RHApplication class. In this 
way, RHApplication will always get executed before any of the 
application’s own classes. 

2.4 Deploying Security-Enhanced Libraries 
Two issues need to be addressed for deploying security-enhanced 
libraries to devices. First, if we prepare an individual set of en-
hanced libraries for each target application, the space overhead 
would be extremely large. Second, if the enhanced libraries can be 
corrupted by malicious applications, the security enhancements 
relying on the libraries would be tricked or even cannot work. 
To solve these issues, we package the security-enhanced libraries 
into an assistant application as its asset files. When the assistant 
application is installed on the device, these libraries will be re-
leased to a private folder of the application, which is set readable 
but non-writable for other applications. As such, these libraries 
are securely shared by all applications of interest. 

2.5 Evaluation 
We evaluate reference hijacking with some prevalent devices as 
detailed in Table 1. The evaluation involves almost all mainstream 
Android versions from 2.x to 5.x, and covers both the Dalvik and 

ART runtime environments. For each device, we use 10 applica-
tions of different categories to check whether they still work with 
reference hijacking. The evaluation result shows that reference 
hijacking can work well on all of these evaluated devices and does 
not affect normal functionalities of the target applications. 

We also evaluate the performance overhead of reference hijacking. 
For each device, we launch 10 different applications each for 100 
times before and after adopting reference hijacking respectively, 
and use the mean value of launch delay as the metric of perfor-
mance. The evaluation results show that the application launch 
delay is less than 1.5 seconds. Note that the launch delay is pri-
marily determined by the number of the pre-loaded classes (i.e., 
the classes that need to be loaded during the construction of the 
execution environment). The more pre-loaded classes there are in 
a device build, the more launch delays there will be. Nevertheless, 
since the launch delay only occurs when the first component of 
the target application is activated, the overhead is acceptable. 

3.  PatchMan 
Unlike vulnerabilities of an application itself, the vulnerabilities 
of underlying system libraries can affect all applications using the 
vulnerable system library. Take the Heartbleed vulnerability [24] 
as an example. It is caused by missing necessary validation for 
untrusted data in the OpenSSL library. All OpenSSL protocol 
client applications executed on a vulnerable device will be affect-
ed by Heartbleed. We develop a prototype system, called Patch-
Man, to provide patched system libraries for the applications of 
interest without flashing or rooting devices. By leveraging refer-
ence hijacking, the target application can run on the top of the 
patched system libraries even on a vulnerable device. 

3.1 Design and Implementation 
In practice, for a specific vulnerability, we can get the patch from 
various channels, such as change logs of the Android source code 
tree [2], public vulnerability databases (e.g., CVE [5], OSVDB 
[8]), or security research organizations. 

In most cases, we can fix a vulnerable library at source code level. 
We can prepare a compilation environment with the same config-
uration as the target device and integrate the patch code into the 
original source code of the vulnerable library. After compiling the 
fixed source code, a patched library will be ready for the device. 

In some cases, manufactures may provide customized system 
libraries based on the standard Android implementation. The 
source code of the customized libraries is not always available. To 
fix the potential vulnerabilities in a close-source library, we need 
to directly rewrite the library file. Take patching a customized 
system class library as an example. We leverage two reverse en-
gineering tools, Baksmali and Smali [14], to rewrite the Dalvik 
bytecode file of the library. As illustrated in Fig. 3, Baksmali is 

Table 1. Evaluated devices. 
Vendor Device Type Version Runtime Delay 

Motorola Defy MB525 2.2.2 Dalvik 1.10 s 
HTC Wildfire S A510e 2.3.3 Dalvik 0.67 s 
HTC One S T528w 4.0.4 Dalvik 1.23 s 
HTC Butterfly X920e 4.1.1 Dalvik 0.57 s 

Samsung Galaxy S4 GT-I9500 4.2.2 Dalvik 0.65 s 
Samsung Galaxy Note3 SM-N9006 4.3 Dalvik 0.87 s 
Samsung Galaxy S5 SM-G900F 4.4.2 Dalvik 0.36 s 

LG Nexus 5 D820 4.4.2 ART 0.74 s 
Motorola Moto G XT1079 5.0.2 ART 0.98 s 
HUAWEI Mate S CRR-UL00 5.1.1 ART 1.08 s 

 

Patched 
Standard 
Library 

Vulnerable 
Customized 

Library Baksmali 
 

Vulnerable 
Code 

Baksmali 
 Patched 

Code Patched 
Code 

 Patched 
Code Smali 

Patched 
Customized 

Library 

Figure 3. Rewriting system class library. 

 

962



used to disassemble the vulnerable class library into a series of 

SMALI intermediate language files. Then, the vulnerable code is 

replaced with the patched code in the form of the intermediate 

language, which can be extracted from a patched standard class 

library. Finally, Smali is used to assemble the patched intermedi-

ate files to a new Dalvik bytecode file, generating an invulnerable 

customized library. In the similar way, we can leverage the exist-

ing binary rewriting technique [22] to patch a vulnerable close-

source native library. 

3.2 Evaluation of PatchMan 
We choose five representative vulnerabilities to evaluate the ef-

fectiveness of PatchMan. The vulnerabilities are patched on some 

widely used vulnerable devices. We choose LinkedIn [6] as the 

target application to be protected. LinkedIn is a popular social 

application with millions of downloads. It maintains the private 

user profile and is granted with some dangerous permissions (e.g., 

READ_CONTACTS for reading contacts). If it is compromised by 

adversaries, the users will face serious security issues. 

The evaluation is performed as follows. First, we exploit the vul-

nerability to attack LinkedIn installed on the vulnerable device. 

Then, we use PatchMan to patch the vulnerability in the system 

libraries and deploy the patched libraries on the device. Finally, 

we relaunch the attack to examine whether the patched libraries 

can successfully block the attacks. As shown in Table 2, the 

patched libraries can be successfully deployed on the tested de-

vices and effectively block the attacks exploiting the vulnerabili-

ties. In addition, it should be noted that these patches do not affect 

normal functionalities of LinkedIn. The protected LinkedIn can 

work well, and the performance overhead is also hardly noticeable. 

3.3 Case Study 
We choose the most severe two of the above vulnerabilities, in-

cluding FakeID [16], Heartbleed [24], as cases to illustrate how to 

fix them by using PatchMan. 

3.3.1 Patching the FakeID Vulnerability 
FakeID (Google Bug 13678484) is a widespread vulnerability in 

the Package Manager Service (PMS). It allows malicious applica-

tion to impersonate specially recognized trusted applications, and 

cause a wide spectrum of consequences. At the worst, it can be 

exploited to inject arbitrary code into the target application for 

execution. All devices prior to Android 4.4 are affected by FakeID. 

The proof-of-concept (PoC) exploit is available in [11]. 

FakeID is caused by a non-verification flaw in the application 

certificate chain enforced by PMS. An attacker can lure the user to 

install a malicious application, which exploits FakeID to forge the 

Adobe signature to impersonate as a Flash plug-in. When the user 

uses a WebView-based application (e.g., LinkedIn) to visit a Flash 

webpage, the malicious application will be treated as a Flash plug-

in and be injected and executed with the permission of the victim 

application. This is a special kind of privilege escalation. 

An early-bird patch of FakeID for vulnerable PMS is provided by 

Bluebox [9]. Because PMS is run as a system server process, we 

cannot patch it directly. Instead, we can create a new patch for the 

target application based on the idea of the patch provided by 

Bluebox. The new patch can also effectively fix FakeID in the 

target application (act as a PMS client) by introducing a validation 

of signatures in the system class library framework.jar. Specifical-

ly, we add the patch code in the method containsPluginPermis-

sionAndSignatures() of the PluginManager class. As shown in Fig. 

4, a filter method getTrustableSignatures() is added to revalidate 

the signatures provided by PMS (at line 4). The filter method will 

verify whether the child certificate is signed with the public key of 

the parent certificate (at line 13). Since manufactures (e.g., Sam-

sung) often customize framework.jar to introduce non-standard 

features that is close-source, we choose to patch framework.jar by 

rewriting its Dalvik bytecode file as described in Section 3.1. 

As a demonstration, Fig. 5 shows two screenshots of LinkedIn 

under attack. Before launching the attack, the user has been lured 

to install a faked Flash plug-in application, which does not pos-

Table 2. Evaluation result of PatchMan. 

Vulnerability 
Affected 

Version 

Evaluated 

Device 

Device 

Version 

Block 

Attacks 

CVE-2012-6636 < 4.2 HTC One S 4.0.4  

CVE-2014-0160 

(Heartbleed) 
4.1.1 HTC Butterfly 4.1.1  

Google Bug 13678484 

(FakeID) 
≤ 4.4 

Samsung  

Galaxy S4 
4.2.2  

CVE-2015-1287 4.4 ~ 5.1 LG Nexus 5 4.4.2  

CVE-2015-1210 4.4 ~ 5.1 
Motorola 

MOTO G 
5.0.2  

 

To Unprotected LinkedIn                               To Protected LinkedIn 

 

Figure 4. Patch for the FakeID vulnerability. The patch code 

is presented in the bold italic type. 

Figure 5. FakeID attacks to LinkedIn. 

01 boolean containsPluginPermissionAndSignatures(…){ 

02   …… 

03   Signature signatures[] = pkgInfo.signatures; 

04   signatures = getTrustableSignatures(signatures); 

05   for (Signature signature : signatures) { 

06     if (SIGNATURE.equals(signature)) return true; 

07   } 

08   …… 

09 } 

10 Signature[] getTrustableSignatures(Signature[] sigs) { 

11   …… 

12   for (int i = 1; i < sigs.length; i++) { 

13     try { certs[i-1].verify(certs[i].getPublicKey()); } 

14     catch (Exception e) { break; } 

15   } 

16   …… 

17 } 

 

The faked Flash 

plug-in is injected 

into LinkedIn and 

steals the contacts. 

963



sess the READ_CONTACTS permission. When the user visits a Flash 

webpage via LinkedIn on a vulnerable device, the faked Flash 

plug-in will be injected into LinkedIn and executed with the per-

missions of LinkedIn. It can get some private information from 

the contact list by leveraging the READ_CONTACTS permission of 

LinkedIn. Fortunately, after protecting LinkedIn with PatchMan, 

the malicious application will not be identified as a valid Flash 

plug-in. The attack can be effectively blocked. Besides, the patch 

does not affect the normal functionality of LinkedIn. 

3.3.2 Patching the Heartbleed Vulnerability 
Heartbleed (CVE-2014-0160) is a severe vulnerability in the pop-

ular OpenSSL cryptographic library. It allows attackers on the 

Internet to read up to 64 KB of the victim’s memory. Devices 

equipped with Android 4.1.1 (e.g., HTC Butterfly) are affected by 

Heartbleed. The proof-of-concept exploit is available in [12]. 

The root cause of Heartbleed is lack of bounds checking for the 

length field of a heartbeat request. An attacker can exploit this 

flaw to attack LinkedIn users by luring them to visit a malicious 

HTTPS server that is controlled by the attacker. When visiting, 

the malicious server will send a crafted heartbeat request that 

contains small payload but claims a very large length. It will trick 

the OpenSSL library used by LinkedIn to respond with data from 

its memory space that most likely contains sensitive information, 

such as the user’s profile. 

The vulnerability exists in the native library libssl.so, which is 

directly generated from the OpenSSL project. We create the patch 

code for Heartbleed according to [10]. As shown in Fig. 6, two 

validations are added to the file openssl/ssl/d1_both.c. The first 

one (at line 1) is used to stop zero-length heartbeats; and the sec-

ond one (at line 4) ensures the payload length is sufficiently long. 

We generate a fixed libssl.so by integrating the patch code into the 

vulnerable source code and then recompiling the fixed code. With 

the help of reference hijacking, the protected LinkedIn application 

will use the fixed libssl.so to perform HTTPS communications to 

avoid suffering from Heartbleed attacks. 

4. ControlMan 
Android provides a powerful inter-component message passing 

system. Developers can conveniently leverage the existing re-

sources and services provided by other applications. It promotes 

the development of rich applications, but also introduces new 

attack surfaces [34]. We develop a prototype system, called Con-

trolMan, to provide a fine-grained access control over ICC of the 

target application. It allows end users to specify customized secu-

rity policies for the target application, regulating: (1) which appli-

cations can serve specific ICC requests sent from the target appli-

cation; and (2) which applications’ ICC requests can be served by 

the target application. 

4.1 Overview 
Android defines four different types of application components, 

i.e., Activities, Services, Broadcast Receivers, and Content Pro-

viders. Components interact with each other primarily via Intent 

messages, which declare a recipient and optionally contain data to 

be passed. Intents can be used explicitly or implicitly. An explicit 

Intent identifies the intended recipient by a fully-qualified name, 

while an implicit Intent leaves it up to the Android system to de-

termine which application(s) should receive the Intent. In An-

droid, AMS serves as a proxy for transferring the interactions 

among components. 

As shown in Fig. 7, ControlMan consists of two major parts: a 

security policy database storing the ICC control policies specified 

by users; and a mediator used to check whether an ICC request is 

allowed by the policies. Every outgoing and incoming ICC re-

quest should be validated by the mediator before delivering. The 

mediator is placed in the implementation of AMS client, which is 

located in the framework.jar class library.  

By employing the method discussed in Section 3.1, we create an 

enhanced framework.jar equipped with the mediator. With refer-

ence hijacking, the applications of interest are forced to run with 

the enhanced framework.jar library to be protected. 

4.2 Design and Implementation 

4.2.1 Security Policies 
The security policies of ControlMan specify which interactions 

between the target application and its opponent(s) are allowed. 

For outgoing ICC requests, the related security rule is a triple 

(type, token, receivers). The type item identifies the type of target 

components. The token item describes the content of the request. 

It can be an action string for an implicit Intent, a component name 

for an explicit Intent, or a URI for a Content Provider. The receiv-

ers item, as the name suggests, specifies the valid request receiv-

ers, which can be the signature, the version, or the permissions of 

an application. The security rule for incoming requests is a 2-tuple: 

(component, senders). The component item identifies the name of 

the target component of the request, and the senders item specifies 

the valid request senders. Since the type of incoming requests can 

be inferred from the component item, we do not need to include it 

in the policy rule. 

4.2.2 Mediation of ICC Requests 
Outgoing ICC requests can be divided into four types: starting 

Activities, sending Broadcasts, binding Services, and accessing 

Content Providers. Particularly, Activities are started with an 

Intent. We choose the ActivityManagerProxy.startActivity() meth-

od as the checkpoint, which will be called before a startActivity 

Intent is sent to AMS. The related mediation code is inserted into 

the method. When the method is invoked, the mediator will query 

PMS to retrieve all potential Activities that can be started by the 

current Intent. From them, the allowed ones are determined by 

matching with the related policy rules. If there is only one allowed 

01 if (1 + 2 + 16 > s->s3->rrec.length) return 0;  

02 hbtype = *p++; 

03 n2s(p, payload); 

04 if (1 + 2 + payload + 16 > s->s3->rrec.length) return 0; 

05 pl = p; 

Figure 6. Patch for the Heartbleed vulnerability. 

  
  

  
ControlMan 

  Security-enhanced 
framework.jar 

 Security 
Policies 

  
PMS  

System 

Services 

  
Mediator 

  
AMS  

Incoming ICC Request 
Outgoing ICC Request 

Application Environment 

Target Application 

Figure 7. Architecture of ControlMan. 

964



Activity, a new explicit Intent for starting this Activity will be 

constructed and sent to AMS. Otherwise, the user is prompted to 

choose one from the allowed Activities. In this case, an explicit 

Intent for the chosen Activity will be sent to AMS. 

The mediation of other three types of outgoing requests is similar 

with that of starting Activities. For sending Broadcasts, the media-

tion code is placed in ActivityManagerProxy.broadcastIntent(). If 

there are more than one allowed Receivers, we will construct an 

explicit Intent for each of them and send these Intents to AMS one 

by one. The mediation code of binding Service requests is placed 

in ActivityManagerProxy.bindService(). If there are more than one 

allowed Services, the mediator also let the user to choose one 

from them. For a Content Provider, applications can perform the 

query, insert, or delete operations by invoking different methods. 

For each operation, we place the mediation code in the corre-

sponding point where the operation request is about to be sent to 

the target Content Provider. For example, the mediation code for 

the query operation is placed in ContentProviderProxy.query(). 

The mediation for incoming ICC requests will be implemented in 

proper checkpoints similarly with done for the outgoing requests. 

However, there is a challenge in identifying the sender for check-

ing an incoming Intent request of Activity and Broadcast. In An-

droid, these two types of Intents do not contain the sender infor-

mation. In practice, AMS will generate a log entry for an ICC 

request, recording the name of the sender and the name of the 

target component. We can infer the sender by reading the log. In 

addition, we can also leverage the usage statistics feature intro-

duced in Android 5.0 to infer the sender as far as possible. This 

new feature provides the last active time of each application. Be-

cause ICC requests are processed in sequence, the sender of the 

latest received request is most likely to be the one whose last ac-

tive time is just previous to that of the target application. We ar-

gue that it is trustable to collect the sender information from the 

system-level sources (e.g., the log and usage statistics), as long as 

the whole system is not compromised by malicious applications. 

4.3 Evaluation of ControlMan 
We have successfully deployed ControlMan on two prevalent 

devices: HTC One S (Android 4.0.4, Dalvik) and Motorola MO-

TO G (Android 5.0.2, ART). We choose these two devices to 

demonstrate that ControlMan can work in both the Dalvik and 

ART runtime environments. To precisely measure the perfor-

mance overhead of ControlMan, we develop an experimental 

application to issue/serve all types of ICC requests. Besides, we 

define 40 security rules (5 for each ICC type respectively) to spec-

ify the valid ICC opponents for the application. For each type of 

ICC operation, we record its execution time before and after de-

ploying ControlMan for 100 times and get the mean value as the 

metric. As shown in Table 3, the performance overhead of Con-

trolMan is about 10% to 20%. We believe it is acceptable, since it 

only occurs in ICCs and does not interfere other operations. 

We also use real-world applications in the OpenIntent project [7] 

to evaluate ControlMan. For these applications, we define related 

security rules to protect them from potential ICC attacks. The 

experiment results show that ControlMan can effective block all 

ICC requests disallowed by the rule settings. From the applica-

tions, we choose OI Safe to demonstrate the effectiveness of Con-

trolMan. OI Safe is a password manager, which is used to store 

user’s passwords for other applications. In practice, OI Safe only 

allows applications possessing the ACCESS_INTENT permission to 

access its data via issuing an IntentHandler Intent. However, the 

user may install a malicious application with the ACCESS_INTENT 

permission by accident. To prevent privacy leakage as far as pos-

sible, we define security rules to further restrict OI Safe to only 

serve the IntentHandler request from the application with certain 

signatures (e.g., the signature of OpenIntent). As shown in Fig. 8, 

for the unprotected OI Safe, the password information stored in it 

can be stolen by an experimental malicious application Evil. By 

contrast, the malicious ICC request sent from Evil will be success-

fully blocked when protected by ControlMan. 

5. TaintMan 
For helping analysts to more effectively capture hidden malicious 

behaviors, we develop a prototype system, called TaintMan, to 

analyze the sensitive information flow on the off-the-shelf devices. 

TaintMan instruments both the target application and the underly-

ing system libraries with taint policy code, and leverages refer-

ence hijacking to make the target application adopt the instru-

mented libraries. As such, it can provide an effective and efficient 

whole-application-wide, instruction-level DTA analysis for the 

applications of interest. 

5.1 Overview 
In TaintMan, the taint policy code tracking information flow is 

statically instrumented into both the target application and the 

underlying system class libraries. The rest of the system is not 

affected. This makes TaintMan can support both the Dalvik and 

ART runtime environments. 

We implement a modified Baksmali tool to automatically instru-

ment the target files. Baksmali is modified to generate additional 

taint policy code for each bytecode instruction when disassem-

Table 3. Performance evaluation of ControlMan. 

ICC Type 

HTC One S 

Android 4.0.4 

(Dalvik) 

Motorola Moto G 

Android 5.0.2 

(ART) Ori. 

(ms) 

ControlMan 

(ms) 

Ori. 

(ms) 

ControlMan 

(ms) 

Outgoing 

ICC 

Requests 

Activity 71 81 (14.1%) 66 79 (19.7%) 

Broadcast 110 130 (18.2%) 46 54 (17.4%) 

Service 40 45 (12.5%) 33 37 (12.1%) 

ContentProvider 110 124 (12.7%) 75 86 (14.7%) 

Incoming 

ICC 

Requests 

Activity 190 226 (18.9%) 151 174 (15.2%) 

Broadcast 40 47 (17.5%) 33 40 (21.2%) 

Service 130 144 (10.8%) 127 141 (11.0%) 

ContentProvider 461 514 (11.5%) 368 411 (11.7%) 

 
To Unprotected OI Safe                                      To Protected OI Safe 

 

 

Figure 8. ICC attacks to OI Safe. 

The invalid ICC 

request from Evil 

is blocked. 

Evil steals the 

password stored 

in OI Safe. 

965



bling the target application or system class library. After disas-

sembling, we will get the intermediate language files instrumented 

with taint policy code. They will be reassembled to a new applica-

tion package or system library file by using Smali. 

An application can obtain sensitive information (e.g., device iden-

tifier, phone number, location, SMS messages, contacts, etc.) by 

calling the corresponding framework APIs. TaintMan hooks these 

APIs (taint sources) to set a taint tag for the returned sensitive data. 

The propagation of the data is monitored by taint policy code 

during the execution of the target application. When a pre-defined 

sink point (e.g., network interface) is reached, the taint tags of the 

data will be checked to detect potentially malicious operation. 

5.2 Design and Implementation 

5.2.1 Taint Tag Storage 
TaintMan provides a 32-bit vector for each variable to encode 

taint tags. Instead of modifying the runtime data structure to allo-

cate additional space for taint tags, TaintMan requests taint tag 

storage by declaring additional variables. 

When a method is invoked, its local variables and parameters are 

stored in the registers allocated on an internal stack. In order to 

store their taint tags, we expand the stack frame of the method to 

twice as large as its original size by doubling the number of the 

method’s requested registers. The expanded space is used to store 

taint tag for each local variable and parameter. For each class field, 

its taint tag storage is allocated by inserting a shadow integer field 

into the class. There is a caveat that Android runtime has a re-

striction that certain fields of certain classes (e.g., the value field 

of the String class) should be placed at a fixed offset of the class 

structure. To avoid violating the restriction, the shadow fields 

should be placed after all of the original fields. For arrays, we 

store only one taint tag per array to minimize storage overhead. In 

the Dalvik bytecode language, array is a built-in class. We cannot 

add an additional shadow filed to the array class. To this end, we 

maintain a hash map between array objects and taint tags. 

5.2.2 Taint Tracking 
TaintMan adopts the classic taint propagation logic: given an 

instruction, the taint value of its destination operand is set to be 

the lower bound of the taint values of its source operand(s). In 

TaintMan, the taint propagation logic for an instruction is refined 

to require less taint policy instructions than the original one. To 

illustrate, we take the binary operation binary-op vA, vB, vC as an 

example. The coarse taint propagation logic for the instruction is 

"τ(vA) ← τ(vB) U τ(vC)", where τ(v) stands for the taint tag of vari-

able v. This logic can be refined as shown in Table 4. In particular, 

when the binary-op instruction takes the same register as its oper-

ands (i.e., A = B = C), no taint propagation is needed. 

Even if a method could propagate taints across the method scope, 

it will not always propagate taints on each execution instance. 

Indeed, only when a method actually imports taints from the out-

side, can it actually propagate taints. That means a method does 

not need to be tracked until it imports some taints from the outside. 

In practice, the instruction-level taint analysis often introduces 

high performance overhead due to a great deal of unnecessary 

taint tracking. To address this problem, TaintMan enforces on-

demand tracking to reduce runtime cost of the taint analysis. Spe-

cifically, for each instrumented method, there are two versions of 

bytecode: a non-tracked version and a tracked version. When 

invoking a method, its non-tracked version is executed by default. 

The control will transfer to the tracked version when any taint is 

actually imported into the method. 

The non-tracked version and the tracked version coexist in the 

instrumented method. The tracked version is placed next to the 

non-tracked version. In the non-tracked version, only data-

importation instructions (DIIs) are monitored, which can import 

data from the outside of the method scope (e.g., the static field 

getter operation instruction sget-op). A conditional transfer in-

struction is added after each DII to transfer the control to the 

tracked version in the case that the imported data are tainted. The 

conditional transfer instruction uses a symbolic target address (i.e., 

label) to avoid complex offset computation. In the tracked version, 

all data operating instructions are monitored with taint policy code. 

For ease of transfer from the non-tracked version, we introduce a 

label after each DII. Note that the execution logic of the original 

method still remains unchanged, even if the control transfers from 

the non-tracked version to the tracked version. 

Take the method Logger$Stream.endIndent(), selected from the 

system class libraries, as an example. This method is to get a val-

ue from a static field f, perform a binary operation, and put the 

result back to f. As shown in Fig. 9, the original method bytecode 

contains sget-op, binary-op, and sput-op instructions. After in-

strumentation, there are two versions of method bytecode. In the 

non-tracked version, only the sget-op instruction is monitored by a 

conditional control transfer instruction (at offset 0x0008). In the 

tracked version, all sget-op, binary-op, and sput-op instructions 

are monitored with taint tracking code. Besides, a label (before 

offset 0x001D) is introduced after the sget-op instruction. At 

runtime, when the sget-op vA, f instruction imports taints from the 

static field f, the control will be transferred from offset 0x0008 in 

the non-tracked version to offset 0x001D in the tracked version. 

Non-Tracked Version 

0000: sget-op vA’, f’ 

0004:  sget-op vA, f 

0008: if-nez vA’, :track_label 

000C:  binary-op vB, vA, C 

0010:  sput-op vB, f 

0014:  return-void 

Tracked Version 

0015:  sget-op vA’, f’ 

0019:  sget-op vA, f 

:track_label 

001D: move-op vB’, vA’ 

001F:  binary-op vB, vA, C 

0023: sput-op vB’, f’ 

0027:  sput-op vB, f 

002B:  return-void 

0000:  sget-op vA, f 

0004:  binary-op vB, vA, C 

0008:  sput-op vB, f 

000C:  return-op 

Before Instrumentation                                    After Instrumentation 

Figure 9. Bytecode of Logger$Stream.endIndent() for en-

forcing on-demand tracking. Instrumenting instructions are 

presented in the bold italic type, while the original instruc-

tions are presented in the normal type. v' and f' stand for 

the shadow register and shadow field respectively. 

Table 4. Taint propagation logic for the binary-op instruction. 

τ(v) stands for the taint tag of variable v. 

Instruction 
Coarse Propaga-

tion Logic 
Condition 

Refined Propaga-

tion Logic 

binary-op 

vA, vB, vC 
τ(vA)←τ(vB)Uτ(vC) 

A≠B≠C τ(vA)←τ(vB)Uτ(vC) 

A=B && A≠C τ(vA)←τ(vA)Uτ(vC) 

A=C && A≠B τ(vA)←τ(vA)Uτ(vB) 

B=C && A≠B τ(vA)←τ(vB) 

A=B=C N/A 

 

966



5.3 Evaluation of TaintMan 
We have successfully deployed TaintMan on two prevalent devic-

es: HTC One S (Android 4.0.4, Dalvik), and Motorola Moto G 

(Android 5.0.2, ART). We choose these two devices to demon-

strate that TaintMan can work in both the Dalvik and ART 

runtime environments. We mainly use HTC One S to evaluate the 

effectiveness of TaintMan with two test sets. The first set is 150 

malware samples randomly selected from the Android Malware 

Genome Project dataset [1]. The second set is 100 popular real-

world applications collected from the official market and some 

famous third-party markets. For confirming the detection results 

of TaintMan, we also deploy TaintDroid on an emulator. For each 

tested malware or application, we respectively execute it in both 

TaintMan and TaintDroid. 

The malware detection result shows that TaintMan can successful-

ly detect privacy-breaching behaviors from all these 150 tested 

samples. As a comparison, 147 of them are also proved by Taint-

Droid. The rest three are all from the DroidKungFu3 malware 

family. The privacy-breaching behaviors of them are not triggered 

when they run in an emulator. Fortunately, when they are ana-

lyzed by TaintMan deployed in a real Android smartphone, their 

malicious behaviors are detected. Due to space limitation, we list 

the detailed detection result in our website1. 

Among all the 100 real-world applications, 51 are found to leak at 

least one kind of private information, of which 47 are detected by 

both TaintMan and TaintDroid. The rest four applications are 

detected only by TaintMan and cannot be executed in the Taint-

Droid environment. We manually analyzed these four applications 

and found they leak private information indeed. Take one of them, 

Write on Pictures, as an example. As shown in Fig. 10, we can see 

that the application actually leaks the IMEI number of the victim’s 

device to a remote server. The potentially malicious behavior is 

successfully detected by TaintMan. Due to space limitation, we 

list the detailed detection result in our website2.  

From the above experiments, we can see that TaintMan has a 

comparative capability with TaintDroid in detecting privacy-

breaching in malware samples and real-world applications. 

We use CaffeineMark [4] to evaluate the performance overhead of 

TaintMan. CaffeineMark is a famous benchmark widely used by 

many Android-based security studies [38, 54]. It uses a series of 

tests to measure the performance of Java programs, and represents 

it as scores. These scores roughly correlate with the number of 

instructions executed per second. The evaluation result is shown 

in Table 5. We can see that the overall performance overhead is 

less than 20%. It is totally acceptable for the analysis purpose. 

                                                                 
1 http://iser.ruc.edu.cn/ReferenceHijacking/MalwareDetection.pdf. 
2 http://iser.ruc.edu.cn/ReferenceHijacking/ApplicationDetection.pdf. 

6. DISCUSSION 
The reference hijacking technique has been shown to be applica-

ble to both the Dalvik and ART runtime environments in almost 

all mainstream Android versions (2.x to 5.x). In general, Google 

releases a new Android version in every several months [26]. At 

the time of writing this paper, Google releases Android 6.0 [17]. 

We are now working to make the reference hijacking technique 

applicable to it. The application launching process of Android 6.0 

is similar as that of the previous versions. We believe the refer-

ence hijacking technique can also be applicable to Android 6.0 

with minor modification. There is a risk that the future Android 

versions may make a great change in the application launching 

process. This may bring difficulties for adopting the reference 

hijacking technique in a certain future version. However, even at 

the worst case, this study is still of great value for enhancing secu-

rity for numerous devices equipped with present Android versions. 

Currently, reference hijacking requires repackaging the target 

application to hook its startup process. Some applications may 

validate the integrity of their packages, which may bring some 

troubles for repackaging. Additional efforts need to be taken to 

bypass the validation by adjusting the validation logic. A very 

recent work, Boxify [30], could help us to put forward a better 

way to hook the startup of applications. Boxify leverages the iso-

lated process feature of Android to make the target application run 

in a monitored sandbox. The reference hijacking technique can be 

introduced in the isolated process to construct a new sandbox 

environment for the monitored application, making it run on the 

top of security-enhanced underlying system libraries. We believe 

that the combination of reference hijacking and Boxify can extend 

the capability of each other, and will result in a better solution for 

securing Android applications. We have begun to research on how 

to leverage Boxify to further improve the practicability of the 

reference hijacking technique. 

In addition to the enhancements provided by the three prototype 

systems presented in this paper, the reference hijacking technique 

can be leveraged to implement more security features. For exam-

ple, TaintMan can be extended to enforce an on-the-fly protection 

to block the command injection attack. In addition, the technique 

can also be used to update the underlying system libraries for the 

applications of interest to introduce some features in the fashion, 

not limited to the security enhancements. 

Reference hijacking is a two-edged sword. In addition to securing 

Android devices, it can also be leveraged for attack purposes. In the 

Android security model, the underlying system libraries are treated 

as a part of trusted computing base (TCB). It is assumed that they 

would work as expected design goal to provide support for applica-

tions and interact with the system. However, this assumption can 

be broken down by leveraging reference hijacking. A malicious 

Figure 10. TaintMan can successfully detect privacy leakage. 

Table 5. CaffeineMark benchmark results. 

Test 

Items 

HTC One S 

Android 4.0.4 

Motorola Moto G 

Android 5.0.2 

Ori. 

 
TaintMan Ori. 

 
TaintMan 

Sieve 1117 1048 (6.2%) 13409 

13409.40 

17505.90 

12700.10 

27802.00 

7346.50 

10817.50 

13688.50 

13409.40 

17505.90 

12700.10 

27802.00 

7346.50 

10817.50 

13688.50 

12363 (7.8%) 

Loop 893 686 (23.2%) 17506 13760 (21.4%) 

Logic 1404 1366 (2.7%) 12700 12433 (2.1%) 

String 893 596 (33.3%) 27802 18988 (31.7%) 

Float 546 534 (2.2%) 7467 7236 (3.1%) 

Method 675 595 (11.9%) 10818 9704 (10.3%) 

Overall 878 730 (16.9%) 13689 11745 (14.2%) 

 

967

http://iser.ruc.edu.cn/ReferenceHijacking/MalwareDetection.pdf
http://iser.ruc.edu.cn/ReferenceHijacking/ApplicationDetection.pdf


application can make itself run with some malformed underlying 

system libraries. This may introduce some new attack surfaces. 

We performed a preliminary study on leveraging reference hijack-

ing for attack purposes, and had some interesting findings. For 

example, we surprisingly found that the implementation of the 

Dalvik virtual machine interpreter can also be replaced via refer-

ence hijacking. As a result, attackers can design a special interpreter 

for their malware, such that the seemingly benign code will per-

form malicious behaviors during execution. It can be treated as an 

advanced obfuscation technique, which allows the malware to 

bypass the existing static program analysis techniques. In fact, the 

security issue is caused by the inherent characteristic of Android 

(i.e., the startup process of applications), rather than introduced by 

the reference hijacking technique. In the future, we will research 

on how to mitigate the security risks. 

7. RELATED WORK 
Erlingsson proposed the concept of inline reference monitoring in 

his thesis [39]. The basic idea is to inline the security monitoring 

code into the target program. Some existing studies [35, 36, 42, 51] 

have employed IRM to enforce security enhancements. In general, 

they rewrite the target program to invoke security checks before 

performing some certain operations of interest, e.g. calling a secu-

rity-sensitive API. However, it is difficult to enforce an in-depth 

security enhancement only by intercepting API calls, such as 

completely repairing a vulnerable system library or tracking the 

execution of an underlying function.  

Xposed [15] provides a security module development framework. 

It hijacks the Zygote process by replacing its executable file (i.e., 

app_process) with a modified one. The modified Zygote loads the 

customized modules to every instance of the Dalvik virtual ma-

chine, allowing every method call to be hooked. Some security 

approaches [45, 46] have been designed base on Xposed. Howev-

er, Xposed requires rooting devices to hijack Zygote, and only 

supports limited devices and Android versions [27]. 

Some existing studies concentrate on patching vulnerabilities 

located in the application [29, 53] or in the underlying system 

components [43, 50]. For the application-layer vulnerabilities, 

they can be directly patched by rewriting the bytecode of the vul-

nerable applications. In order to patch system components vulner-

abilities, PatchDroid [43] hooks critical system processes (e.g., 

Zygote) to dynamically inject patch code into the target applica-

tion process. However, the hooking of system processes requires 

root privilege. As a result, PatchDroid can only work in rooted 

devices. Similarly, the study in [50] also requires rooting devices 

to patch system libraries vulnerabilities. As a comparison, Patch-

Man can patch system libraries vulnerabilities for the applications 

of interest without rooting devices. 

A number of studies have been proposed to enhance the Android 

security model to provide fine-grained and flexible access control 

on sensitive APIs [42, 51, 54], on application components [37, 44], 

or on whole system resources [32]. Some of them [42, 51] achieve 

their goals by rewriting applications to hook critical function calls. 

For example, Dr. Android and Mr. Hide [42] rewrite the bytecode 

of the target application to encapsulate sensitive APIs with moni-

toring code. However, these studies are limited to enforcing the 

function-call-level protection policy and are insufficient in enforc-

ing in-depth security enhancements. Other studies [32, 37, 44, 54] 

require flashing devices to embedded their implementation into 

the underlying system components. As demonstrated by Control-

Man, with reference hijacking, we can implement most of the core 

functionalities of these studies for the applications of interest 

without flashing devices. 

A recent work, Boxify [30], provides a novel privilege separation 

solution. The untrusted application is sandboxed and run in an 

isolated process. In the sandbox, IPC calls and system calls of the 

target application can be intercepted and mediated. Boxify does 

not require flashing or rooting devices, neither require modifying 

the target application. It is a great improvement in securing An-

droid. However, it is still limited to enforcing the function-call-

level protection policy. In this sense, Boxify and our study can 

perfectly complement each other to create a better solution. We 

leave the combination of them as our future work. 

Many malware analysis techniques [28, 38, 40, 41, 47, 52] have 

been proposed. FlowDroid [28] is a representative static analysis 

approach on Android platform. It performs a precise context, flow, 

field, object-sensitive and lifecycle-aware taint analysis for each 

Android application component. In this study, we mainly focus on 

the dynamic analysis. DTA is a mainstream malware dynamic 

analysis technique. Many analysis systems are proposed based on 

DTA. DroidScope [52] is a virtualization-based malware analysis 

platform. It is built on the top of a CPU emulator named QEMU 

[31] and cannot be deployed on real devices. TaintDroid [38], an 

extension to Android, provides real-time information flow track-

ing by modifying the Dalvik virtual machine of Android. Ap-

pFence [41] extends TaintDroid, allowing users to feed fake pri-

vate information to applications and block network transmissions 

that contain private information. If users want to employ these 

two systems, they have to flash devices. AppCaulk [47] does not 

require modifying the underlying system. However, it employs a 

summary-based approach to analysis underlying system library 

methods, which is not precise enough. By contrast, TaintMan can 

perform instruction-level taint analysis for the target application 

and its underlying system libraries on an unmodified device. 

8. CONCLUSION 
In this paper, we propose a novel technique, called reference hi-

jacking, to enforce in-depth security enhancements in the underly-

ing system libraries of the target applications. Compared with the 

existing studies, it does not require any modification of the under-

lying system. Based on reference hijacking, three prototype sys-

tems, PatchMan, ControlMan, and TaintMan, are implemented to 

patch vulnerabilities, protect ICC communications, and perform 

DTA analysis for the target application respectively. By evaluat-

ing them on a number of off-the-shelf devices, the reference hi-

jacking technique and these systems have shown to be applicable 

to both the Dalvik and ART environments and to almost all main-

stream Android versions (2.x to 5.x). Overall, our work provides a 

new way to more practicably enhance the security of Android 

devices. We hope that this study can be combined with other ef-

forts to get better solution and address more security problems. 

9. ACKNOWLEDGMENTS 
The authors would like to thank the anonymous reviewers for 

their constructive comments. This research work was supported, 

in part, by National Natural Science Foundation of China (NSFC) 

under grants 61170240, 91418206 and 61472429, National Sci-

ence and Technology Major Project of China under grant 

2012ZX01039-004, NSF under awards 1409668, 1320326, and 

0845870, ONR under contract N000141410468, and Cisco Sys-

tems under an unrestricted gift. Any opinions, findings, and con-

clusions in this paper are those of the authors only and do not 

necessarily reflect the views of our sponsors. 

968



10. REFERENCES 
[1] Android Malware Genome Project. 

http://www.malgenomeproject.org. 

[2] Android Source Code Tree. 

https://android.googlesource.com. 

[3] Apktool. http://ibotpeaches.github.io/Apktool. 

[4] CaffeineMark. http://www.benchmarkhq.ru/cm30. 

[5] CVE. https://cve.mitre.org. 

[6] LinkedIn. 

https://play.google.com/store/apps/details?id=com.linkedin.a

ndroid. 

[7] OpentIntent. 

https://code.google.com/p/openintents/downloads/list. 

[8] OSVDB. http://osvdb.org. 

[9] Patch for FakeID. 

https://android.googlesource.com/platform/libcore/+/android-

cts-4.1_r4. 

[10] Patch for Heartbleed. 

http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=

96db902. 

[11] PoC for FakeID. 

https://github.com/retme7/FakeID_poc_by_retme_bug_1367

8484. 

[12] PoC for Heartbleed. 

https://github.com/Lekensteyn/pacemaker. 

[13] Proportion of devices running vulnerable versions of An-

droid. http://androidvulnerabilities.org/graph. 

[14] Smali and BakSmali. https://github.com/JesusFreke/smali. 

[15] Xposed Framework. http://repo.xposed.info. 

[16] Bluebox. Android Fake ID Vulnerability Lets Malware Im-

personate Trusted Applications. 

https://bluebox.com/technical/android-fake-id-vulnerability. 

[17] CNET. M is for Marshmallow: Google names its next An-

droid update. http://www.cnet.com/news/m-is-for-

marshmallow-google-announces-name-of-android-update. 

[18] ExtremeTech. Google Throws Nearly a Billion Android Us-

ers Under the Bus, Refuses to Patch OS Vulnerability. 

http://www.extremetech.com/mobile/197346-google-throws-

nearly-a-billion-android-users-under-the-bus-refuses-to-

patch-os-vulnerability. 

[19] Forbes. Report: 97% Of Mobile Malware Is On Android. 

http://www.forbes.com/sites/gordonkelly/2014/03/24/report-

97-of-mobile-malware-is-on-android-this-is-the-easy-way-

you-stay-safe. 

[20] Inquirer. Outdated Android Devices Are Exposing 400 Mil-

lion Users to Security Threats. 

http://www.theinquirer.net/inquirer/feature/2235734/outdated

-android-devices-are-exposing-400-million-users-to-security-

threats. 

[21] International Data Corporation. Smartphone OS Market 

Share, 2015 Q2. http://www.idc.com/prodserv/smartphone-

os-market-share.jsp. 

[22] ISPRAS. Static ARM Binary Code Instrumentation. 

http://www.ispras.ru/en/technologies/static_arm_binary_code

_instrumentation/. 

[23] Neowin. HTC Officially Stops One S Updates, Barely a Year 

after Launch. http://www.neowin.net/news/htc-officially-

stops-one-s-updates-barely-a-year-after-launch. 

[24] OpenSSL. The Heartbleed Bug. http://heartbleed.com. 

[25] TechTarget. Rooted Android Device Risks Include Network 

Access, Data Theft. 

http://searchmobilecomputing.techtarget.com/tip/Rooted-

Android-device-risks-include-network-access-data-theft. 

[26] Wikipedia. Android Version History. 

https://en.wikipedia.org/wiki/Android_version_history. 

[27] Xda-Developers. List of Devices Able to Run Xposed on 

Lollipop. http://forum.xda-developers.com/xposed/list-

devices-able-to-run-xposed-lollipop-t3030993. 

[28] S. Arzt, S. Rasthofer, C. Fritz , E. Bodden, A. Bartel, J. Klein, 

Y. L. Traon, D. Octeau, and P. McDaniel. FlowDroid: Pre-

cise Context, Flow, Field, Object-Sensitive and Lifecycle-

Aware Taint Analysis for Android Apps. In Proceedings of 

the ACM SIGPLAN Conference on Programming Language 

Design and Implementation. PLDI’ 2014. 

[29] T. Azim, I. Neamtiu, and L. M. Marvel. Towards Self-

Healing Smartphone Software via Automated Patching. In 

Proceedings of the 2014 International Conference on Auto-

mated Software Engineering. ASE’ 2014. ACM, 623-628. 

[30] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. S. 

Rekowsky. Boxify: Full-Fledged App Sandboxing for Stock 

Android. In Proceedings of the 24th USENIX Security Sym-

posium. Security’ 2015. 

[31] F. Bellard. Qemu, a Fast and Portable Dynamic Translator. 

In Proceedings of the USENIX Annual Technical Confer-

ence. ATC’ 2005. USENIX Association, 41-46. 

[32] S. Bugiel, S Heuser, and A. R. Sadeghi. Flexible and Fine-

Grained Mandatory Access Control on Android for Diverse 

Security and Privacy Policies. In Proceedings of the 22th 

USENIX Security Symposium. Security’ 2013. USENIX As-

sociation, 131-146. 

[33] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, 

W. Zou, and P. Liu. Finding Unknown Malice in 10 Seconds: 

Mass Vetting for New Threats at the Google-Play Scale. In 

Proceedings of the 24st USENIX Conference on Security 

Symposium. Security’ 2015, USENIX Association, 659-674. 

[34] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyz-

ing Inter-Application Communication in Android. In Pro-

ceedings of the 9th International Conference on Mobile Sys-

tems. MobiSys’ 2011. ACM, 239-252. 

[35] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Pies-

sens, I. Siahaan, and D. Vanoverberghe. Security-by-

Contract on the .NET Platform. Technical Report. 

https://lirias.kuleuven.be/bitstream/123456789/183893/1/Els

evier%2BInformation%2BSecurity%2BTechnical%2BRepor

t.pdf. 

[36] L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Philippa-

erts, F. Piessens, and D. Vanoverberghe. A Flexible Security 

Architecture to Support Third-Party Applications on Mobile 

Devices. In Proceedings of the 2007 ACM workshop on 

Computer Security Architecture. CASW’ 2007. ACM, 19-28. 

[37] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. 

QUIRE: Lightweight Provenance for Smart Phone Operating 

969

http://www.malgenomeproject.org/
https://android.googlesource.com/
http://ibotpeaches.github.io/Apktool
http://www.benchmarkhq.ru/cm30
https://cve.mitre.org/
https://play.google.com/store/apps/details?id=com.linkedin.android
https://play.google.com/store/apps/details?id=com.linkedin.android
https://code.google.com/p/openintents/downloads/list
http://osvdb.org/
https://android.googlesource.com/platform/libcore/+/android-cts-4.1_r4
https://android.googlesource.com/platform/libcore/+/android-cts-4.1_r4
http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902
http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902
https://github.com/retme7/FakeID_poc_by_retme_bug_13678484
https://github.com/retme7/FakeID_poc_by_retme_bug_13678484
https://github.com/Lekensteyn/pacemaker
http://androidvulnerabilities.org/graph
https://github.com/JesusFreke/smali
http://repo.xposed.info/
https://bluebox.com/technical/android-fake-id-vulnerability
http://www.cnet.com/news/m-is-for-marshmallow-google-announces-name-of-android-update
http://www.cnet.com/news/m-is-for-marshmallow-google-announces-name-of-android-update
http://www.extremetech.com/mobile/197346-google-throws-nearly-a-billion-android-users-under-the-bus-refuses-to-patch-os-vulnerability
http://www.extremetech.com/mobile/197346-google-throws-nearly-a-billion-android-users-under-the-bus-refuses-to-patch-os-vulnerability
http://www.extremetech.com/mobile/197346-google-throws-nearly-a-billion-android-users-under-the-bus-refuses-to-patch-os-vulnerability
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe
http://www.theinquirer.net/inquirer/feature/2235734/outdated-android-devices-are-exposing-400-million-users-to-security-threats
http://www.theinquirer.net/inquirer/feature/2235734/outdated-android-devices-are-exposing-400-million-users-to-security-threats
http://www.theinquirer.net/inquirer/feature/2235734/outdated-android-devices-are-exposing-400-million-users-to-security-threats
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.ispras.ru/en/technologies/static_arm_binary_code_instrumentation/
http://www.ispras.ru/en/technologies/static_arm_binary_code_instrumentation/
http://www.neowin.net/news/htc-officially-stops-one-s-updates-barely-a-year-after-launch
http://www.neowin.net/news/htc-officially-stops-one-s-updates-barely-a-year-after-launch
http://heartbleed.com/
http://searchmobilecomputing.techtarget.com/tip/Rooted-Android-device-risks-include-network-access-data-theft
http://searchmobilecomputing.techtarget.com/tip/Rooted-Android-device-risks-include-network-access-data-theft
https://en.wikipedia.org/wiki/Android_version_history
http://forum.xda-developers.com/xposed/list-devices-able-to-run-xposed-lollipop-t3030993
http://forum.xda-developers.com/xposed/list-devices-able-to-run-xposed-lollipop-t3030993
https://lirias.kuleuven.be/bitstream/123456789/183893/1/Elsevier%2BInformation%2BSecurity%2BTechnical%2BReport.pdf
https://lirias.kuleuven.be/bitstream/123456789/183893/1/Elsevier%2BInformation%2BSecurity%2BTechnical%2BReport.pdf
https://lirias.kuleuven.be/bitstream/123456789/183893/1/Elsevier%2BInformation%2BSecurity%2BTechnical%2BReport.pdf


Systems. In Proceedings of the 20th USENIX Security Sym-

posium. Security’ 2011. 

[38] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. 

McDaniel, and A. Sheth. TaintDroid: an Information-Flow 

Tracking System for Realtime Privacy Monitoring on 

Smartphones. In Proceedings of the 9th USENIX Conference 

on Operating Systems Design and Implementation. OSDI’ 

2010. USENIX Association, 393-407. 

[39] Ú. Erlingsson. The Inlined Reference Monitor Approach to 

Security Policy Enforcement. PhD Dissertation, Cornell 

University. 2004. http://www.ru.is/starfsfolk/ulfar/thesis.pdf. 

[40] C. Gibler, J. Crussell, J. Erickson, H. Chen. AndroidLeaks: 

Automatically Detecting Potential Privacy Leaks in Android 

Applications on a Large Scale. In Proceedings of 5th Inter-

national Conference on Trust and Trustworthy Computing. 

TRUST’ 2012. Springer, 291-307. 

[41] P. Hornyack, S. Han, J. Jung, S. E. Schechter, and D. Weth-

erall. “These Aren’t the Droids You’re Looking For”: Retro-

fitting Android to Protect Data from Imperious Applications. 

In Proceedings of the 18th ACM Conference on Computer 

and Communications Security. CCS’ 2011. ACM, 639-652. 

[42] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. 

S. Foster, and T. D. Millstein. Dr. Android and Mr. Hide: Fi-

ne-Grained Security Policies on Unmodified Android. In 

Proceedings of the 2nd ACM Workshop on Security and Pri-

vacy in Smartphones and Mobile Devices. SPSM’ 2012. 

ACM, 3-14. 

[43] C. Mulliner, J. Oberheide, W. K. Robertson, and E. Kirda. 

PatchDroid: Scalable Third-party Security Patches for An-

droid Devices. In Proceedings of the 29th Annual Computer 

Security Applications Conference. ACSAC’ 2013. ACM, 

259-268. 

[44] M. Ongtang, S. E. McLaughlin, W. Enck, and P. McDaniel. 

Semantically Rich Application-Centric Security in Android. 

In Proceedings of the 25th Annual Computer Security Appli-

cations Conference. ACSAC’ 2009. ACM, 340-349. 

[45] G. Paul and J. M. Irvine. Achieving Optional Android Per-

missions without Operating System Modifications. In Pro-

ceedings of the 81st Vehicular Technology Conference. VTC’ 

2015. IEEE, 1-5. 

[46] L. Qiu, Z. Zhang, Z. Shen, and G. Sun. AppTrace: Dynamic 

Trace on Android Devices. In Proceedings of the 2015 Inter-

national Conference on Communications. ICC’ 2015. 

[47] J. Schütte, D. Titze, and J. M. D. Fuentes. AppCaulk: Data 

Leak Prevention by Injecting Targeted Taint Tracking into 

Android Apps. In Proceedings of the 13th International Con-

ference on Trust, Security and Privacy in Computing and 

Communications. TrustCom’ 2014. IEEE, 370-379. 

[48] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever 

Wanted to Know about Dynamic Taint Analysis and Forward 

Symbolic Execution (but Might Have Been Afraid to Ask). 

In Proceedings of 31st IEEE Symposium on Security and 

Privacy. SP’ 2010. IEEE, 317-331. 

[49] T. Vidas and N. Christin. Evading Android Runtime Analy-

sis via Sandbox Detection. In Proceedings of the 9th ACM 

Symposium on Information, Computer and Communications 

Security. ASIACCS’ 2014. ACM, 447-458. 

[50] L. Wu. Vulnerability Detection and Mitigation in Commodi-

ty Android Devices. PhD Dissertation, North Carolina State 

University. 2015. 

http://repository.lib.ncsu.edu/ir/bitstream/1840.16/10496/1/et

d.pdf. 

[51] R. Xu, H. Saïdi, and R. Anderson. Aurasium: Practical Poli-

cy Enforcement for Android Applications. In Proceedings of 

the 21st USENIX Conference on Security Symposium. Securi-

ty’ 2012, USENIX Association, 539-552. 

[52] L. K. Yan and H. Yin. DroidScope: Seamlessly Reconstruct-

ing the OS and Dalvik Semantic Views for Dynamic Android 

Malware Analysis. In Proceedings of the 21st USENIX Con-

ference on Security Symposium. Security’ 2012. USENIX 

Association, 569-584. 

[53] M. Zhang and H. Yin. AppSealer: Automatic Generation of 

Vulnerability-Specific Patches for Preventing Component 

Hijacking Attacks in Android Applications. In Proceedings 

of the 21st Annual Network and Distributed System Security 

Symposium. NDSS’ 2014. 

[54] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming In-

formation-Stealing Smartphone Applications (on Android). 

In Proceedings of the 4th International Conference on Trust 

and Trustworthy Computing. TRUST’ 2011. Springer, 93-

107. 

[55] Y. Zhou and X. Jiang. Dissecting Android malware: Charac-

terization and Evolution. In Proceedings of the 2012 IEEE 

Symposium on Security and Privacy. SP’ 2012. IEEE, 95-109. 

 

970

http://www.ru.is/starfsfolk/ulfar/thesis.pdf
http://repository.lib.ncsu.edu/ir/bitstream/1840.16/10496/1/etd.pdf
http://repository.lib.ncsu.edu/ir/bitstream/1840.16/10496/1/etd.pdf

