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Abstract—Dynamic taint analysis (DTA), as a mainstream information flow tracking technique, has been widely used in mobile
security. On the Android platform, the existing DTA approaches are typically implemented by instrumenting the Dalvik virtual machine
(DVM) interpreter or the Android emulator with taint enforcement code. The most prominent problem of the interpreter-based
approaches is that they cannot work in the new Android RunTime (ART) environment introduced since the 5.0 release. For the
emulator-based approaches, the most prominent problem is that they cannot be deployed on real devices. In addition, almost all the
existing Android DTA approaches only concern the explicit information flow caused by data dependence, while completely ignore the
impact of implicit information flow caused by control dependence. These problems limit their adoption in the latest Android system and
make them ineffective in detecting the state-of-the-art malware whose privacy-breaching behaviors are inactivated in the analyzed
environment (e.g., the emulator) or conducted via implicit information flow. In this paper, we present TaintMan, an ART-compatible DTA
framework that can be deployed on unmodified and non-rooted Android devices. In TaintMan, the taint enforcement code is statically
instrumented into both the target application and the system class libraries to track data flow and common control flow. A specially
designed execution environment reconstruction technique, named reference hijacking, is proposed to force the target application to
reference the instrumented system class libraries. By enforcing on-demand instrumentation and on-demand tracking, the performance
overhead is significantly reduced. We have developed TaintMan and deployed it on two popular stock smartphones (HTC One S
equipped with Android-4.0 and Motorola MOTO G equipped with Android-5.0). The evaluation with malware samples and real-world
applications shows that TaintMan can effectively detect privacy leakage behaviors with an acceptable performance overhead.

Index Terms—Dynamic taint analysis, information flow control, privacy leakage, static instrumentation, Android, Dalvik, DVM, ART
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1 INTRODUCTION

ANDROID has become the most widely used mobile
operating system. It dominated the global smartphone

market with an 87% share in 2016 and continues to grow
steadily [1]. Meanwhile, such popularity of Android also
makes it more attractive to adversaries. A security report
from F-Secure highlights that Android accounts for 97%
of all mobile malware [2]. Even in the official application
market (i.e., Google Play), there still exist a considerable
number of malware [3].

Among all the malicious activities of Android malware,
the most common one is stealing private information. As
shown in the work of Zhou et al. [4], 744 (59%) of the
total 1260 Android malware samples collected from several
markets have been found to actively collect various private
information on the infected phones. Since mobile users are
increasingly relying on smartphones to store and handle
their personal data, the privacy-breaching malware will
pose a more significant threat to user privacy in the future.

In order to detect privacy leakage, there is a need for an
in-depth inspection of how private information is actually
used by an application. Dynamic taint analysis (DTA) [5], as
a mainstream information flow control technique, is quite
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suitable for such a task. It can precisely monitor sensitive
information flow during application execution to examine
whether private data is transmitted out of the device.

On the Android platform, with the evolution of sys-
tem runtime and the development of malware technique,
three rational but challenging demands are proposed on the
design and implementation of a DTA framework. First, it
requires the DTA framework to be workable in the new
Android RunTime (ART) environment introduced since the
5.0 release. Second, it requires the DTA framework to be
deployable on real devices for capturing evasive behaviors
that are inactivated in the analyzed environment (e.g., the
emulator). Third, it requires the DTA framework to be
feasible to mitigate the security threat caused by common
implicit information flow.

There are some existing DTA approaches for Android,
of which TaintDroid [6] and DroidScope [7] are the two
representative ones. TaintDroid provides a realtime system-
wide information-flow tracking by instrumenting the Dalvik
virtual machine (DVM) interpreter. It is the core of many
malware detection systems [8], [9]. DroidScope provides
virtualization-based malware analysis support by instru-
menting the Android emulator. With DroidScope, analysts
can perform information flow analysis of the whole Android
system running in the emulator.

These existing DTA approaches have proven to be valu-
able in analyzing privacy leakage behaviors in the past few
years. Unfortunately, they do not fully satisfy the aforemen-
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tioned three real-world demands. Most prominent problem
of the TaintDroid-like interpreter-based approaches is that
they cannot work in the ART runtime environment. In ART,
the DVM interpreter is replaced with an on-device compiler
suite. Consequently, the interpreter-based approaches lack
their instrumentation target and hence are not applicable
anymore. For those DroidScope-like emulator-based ap-
proaches, the most prominent problem is that they cannot be
deployed on real devices. Nowadays, sophisticated malware
samples have begun to employ anti-analysis technique to
evade detection. Especially, they will inactivate their ma-
licious logic if they perceive that they are not executed
on the real device [10]. Consequently, the emulator-based
approaches are ineffective in capturing evasive behaviors of
the state-of-the-art malware. In addition, almost all the ex-
isting Android DTA approaches only concern explicit infor-
mation flow caused by data dependence, while completely
ignore the impact of implicit information flow (IIF) caused
by control dependence. Our prior work [11] has demon-
strated the effectiveness and efficiency of IIF in transmitting
sensitive data. Real-world malware samples are found to
leverage IIF. It is not only a theoretical threat but a reality.

Based on the above discussion, we argue that it is nec-
essary to design and implement a DTA framework for the
ART runtime environment on real smartphone devices to
track data flow and common control flow. In this paper,
we present TaintMan, an ART-compatible DTA framework
that can be conveniently deployed on unmodified and non-
rooted stock Android devices. To mitigate the threat of IIF,
we develop a tracking algorithm based on our prior work
[11] to track a special kind of control dependence called
strict control dependence, which highly resembles the nature
of data dependence and hence is most likely to be leveraged
for attacks. Different from most existing DTA approaches,
TaintMan is implemented via static instrumentation, rather
than dynamic instrumentation. Given a suspicious applica-
tion, analysts can use TaintMan to automatically instrument
its bytecode file(s) with taint enforcement code that achieves
information-flow tracking. The instrumented application is
installed and run on the smartphone directly. During execu-
tion, taint tracking will be performed simultaneously as if it
were a part of the application‘s functionality.

It should be noted that tainted data can be propagated
via both application code and system class code. It is insuf-
ficient to only instrument application code for tracking taint
propagation paths involving system class libraries. In Taint-
Man, to address the problem, both the target application and
the system class libraries are instrumented with taint en-
forcement code. By instrumenting system class libraries, we
can provide an instruction-level taint tracking completely
covering the underlying system classes. It is more precise
than the approaches relying on method summaries to model
the behaviors of the underlying system classes [12], [13].

However, making the target application adopt the in-
strumented libraries is not a trivial task. In Android, system
class libraries are placed in a specific system folder that is
only writable for the root user. Without rooting the device, it
is impossible to rewrite or replace the original system class
libraries with their instrumented counterparts. To this end,
we propose reference hijacking, a novel technique to recon-
struct a new execution environment for the target applica-

tion, where the system class libraries can be loaded from
a configurable location instead of the default folder. With
this technique, the reference of the target application to the
system class libraries can be redirected to their instrumented
counterparts. Eventually, the information flow involving the
underlying system classes can also be effectively tracked.

For a DTA framework to be practical, its performance
overhead should be acceptable. The most existing DTA ap-
proaches always instrument and track all instructions with-
out discrimination, hence suffer from an unnecessarily high
performance overhead. In TaintMan, we enforce on-demand
instrumentation and on-demand tracking to optimize the
performance. First, static analysis is conducted to identify
the methods that can propagate taints across method scope.
Second, two versions of bytecode are prepared for each
identified method: a non-tracked version and a tracked ver-
sion. The version to be executed is determined at runtime by
observing whether the method actually imports taint from
the scope outside the method. As such, the instrumentation
and tracking only occur when necessary. In addition, we
store the taint tags in an efficient way so that they can be
conveniently accessed. We also refine the taint propagation
logic for each kind of instruction to allow taint tracking to be
implemented with as little code as possible. These elaborate
designs dramatically reduce the performance overhead.

We have developed TaintMan and deployed it on two
popular stock smartphones: HTC One S equipped with
Android-4.0 (DVM) and Motorola MOTO G equipped with
Android-5.0 (ART). We evaluate TaintMan with three sets
of application samples: 150 malware samples selected from
the Android Malware Genome Project [14], 100 popular
applications collected from multiple markets [15], [16], [17],
[18], and 9 proof-of-concepts and 2 real-world malware
samples leveraging IIF [11]. The evaluation results show that
TaintMan can effectively detect privacy leakage behaviors.
In addition, the performance and storage overhead of Taint-
Man are acceptable for analysis purposes. The evaluation
with a standard benchmark shows that TaintMan incurs
42.3% performance overhead for tracking both data depen-
dence and strict control dependence without optimization
and 28.9% with optimization. The evaluation with real-
world applications shows that TaintMan has no noticeable
interference on the interactive behaviors of applications. The
size of the instrumented applications is about 23% larger
than the original ones, and the size of the instrumented
system class libraries are about three times as large as the
original ones.

In summary, the main contributions of this paper are the
following:

• We present TaintMan, an ART-compatible dynamic
taint analysis framework that can be conveniently
deployed on stock smartphones without flashing or
rooting devices.

• We enhance TaintMan with a tracking algorithm to
track a special kind of control dependence, which
highly resembles the nature of data dependence and
hence is most likely to be leveraged for attacks.

• We propose a novel execution environment re-
construction technique to force the target application
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Fig. 1. Instrumentation of an application and a system class library. The instrumentation process is performed on the desktop computer.

to reference the instrumented system class libraries.
As a result, taint tracking can completely cover both
the target application code and the system classes at
the instruction level.

• We enforce on-demand instrumentation and on-
demand tracking to avoid unnecessary taint analysis
whenever possible. In addition, we design efficient
taint tag storage and refine taint propagation logic
to implement taint tracking with as little code as
possible. These optimizations dramatically reduce
the performance overhead.

2 BACKGROUND

2.1 Android Application Model
Android applications are mainly developed in Java, and
converted into the customized Dalvik bytecode langauge
format to be stored in bytecode file(s) 1. In the DVM runtime
environment (Android version 4.4 and below), the bytecode
is interpreted by the Dalvik virtual machine at runtime, with
hot traces and functions being just-in-time (JIT) compiled
into native code for execution. In the ART runtime envi-
ronment (Android version 5.0 and above), the bytecode is
completely compiled into native code at install time and
executed directly at runtime without any interpretation.

The lifecycle of an application process is managed by
the Activity Manager Service (AMS). In particular, when
starting an application, AMS will create a new process for it
by forking from a special process, called Zygote. The Zygote
process is created during the system boot-strap. It initializes
an execution environment, which will be inherited by all
forked application processes. Especially, the execution en-
vironment inherited from Zygote will load system classes
from the default system class libraries.

Android provides a default Application class as the entry
point of an application. Developers can specify customized
Application class in the application‘s manifest file. When an
application is about to start, its Application class is instanti-
ated. The class initialization method of the Application class
will be invoked before any component is activated 2.

1. By default, every application has a single .dex file. If the application
code grows beyond the limits of what is allowed in a single .dex file
(e.g., number of classes, number of methods, etc.), the code will be split
over multiple .dex files.

2. We treat the class initialization method (rather than the onCreate()
method) of the Application class as the entry point of an application. It
is always executed before the initialization of any component.

2.2 Dalvik Bytecode Language

Dalvik bytecode language is register based. All computa-
tions are performed via registers. Dalvik has six kinds of
variables, including local variables, parameters (actual or
formal), return values, exceptions, class fields (static or in-
stance) and arrays. Values of local variables and parameters
are stored in registers and can be directly manipulated.
Return values are moved from the callee‘s registers to the
caller‘s registers after invocation. Exceptions are passed
from the registers at the exception site to the registers in the
exception handler. Values of class fields and array elements
are loaded from and stored to registers before and after use.

The instruction set of Dalvik bytecode language has a
variable length. The length of an instruction is decided
by both the number of its operands and the size of each
operand. Every instruction has certain restrictions on the
maximal index of its operand registers. In the case that an
instruction has to manipulate a register whose index exceeds
the index restriction, it is expected that the register content
get moved from the original register to a lower-indexed reg-
ister before operation, and moved from the lower-indexed
result register to the higher-indexed register after operation.

3 APPROACH OVERVIEW

TaintMan has two major components: an instrumentation
tool that runs on the desktop computer, and a reference
hijacking tool that runs on the smartphone device. The in-
strumentation tool, named Instrumentor, is used for statically
instrumenting both the target application and the system
class libraries. It is implemented on top of Smali/Baksmali
[19], an open-source assembler/disassembler for the Dalvik
bytecode language. The reference hijacking tool is used
for reconstructing a new execution environment for the
target application, forcing it to reference the instrumented
underlying libraries. It is accomplished by a customized
Application class RHApplication and an executable program
file RHZygote. RHApplication is used to store/resume nec-
essary information and reset the current program state of
the application process. RHZygote mimics the function of
Zygote to construct a new execution environment.

Fig. 1 (a) shows the instrumentation procedure of an
application. First, a reverse engineering tool, Apktool [20], is
employed to decompress the original application package.
Second, by using the Instrumentor tool, the taint enforce-
ment code is added to the original bytecode file(s). Third, the
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alarm. That means, all of these PoCs can successfully transmit 
sensitive data and evade the protection. 

The performance evaluation measures each PoC from four 
aspects: the code size increment, memory consumption increment, 
and the time consumption in transmitting a small amount of data 
(here we use phone number) and a large amount of data (here we 
use 1M randomly-generated data). The evaluation result is shown 
in Table 2. Overall, these PoCs incur less than 0.3% application 
size increment, and less than 2% memory consumption increment. 
All PoCs can efficiently transmit data. The time consumption of 
these PoCs (as part of FMajor) in transmitting phone number is 
less than 0.1 second. We also evaluate these PoCs in transmitting 
1M data. We can see that even the least efficient PoC can transmit 
1M data in about 1 second. 

Table 2. Performance of PoCs. 

PoC Size 
Increment 

Memory 
Increment 

Sending 
PN 

Sending 
1M Data 

if-based IIF 
(in nesting manner) 

0.4 KB 
(0.06%↑) 

11.3 KB 
(0.18%↑) 42 ms 294 ms 

if-based IIF 
(in looping manner) 

0.3 KB 
(0.05%↑) 

8.2 KB 
(0.13%↑) 45 ms 303 ms 

switch-based IIF 0.4 KB 
(0.06%↑) 

10.2 KB 
(0.16%↑) 37 ms 283 ms 

exception-prone-based IIF 0.4 KB 
(0.06%↑) 

28.7 KB 
(0.46%↑) 51 ms 391 ms 

throw-based IIF 0.9 KB 
(0.14%↑) 

55.3 KB 
(0.89%↑) 49 ms 314 ms 

polymorphism-based IIF 
(via virtual invocation) 

1.1 KB 
(0.17%↑) 

69.6 KB 
(1.12%↑) 47 ms 310 ms 

polymorphism-based IIF 
( via reflective invocation) 

0.7 KB 
(0.11%↑) 

78.8 KB 
(1.27%↑) 49 ms 596 ms 

polymorphism-based IIF 
(via message dispatching) 

1.4 KB 
(0.21%↑) 

84.0 KB 
(1.35%↑) 57 ms 844ms 

polymorphism-based IIF 
(via event dispatching) 

1.9 KB 
(0.29%↑) 

109.6 KB 
(1.76%↑) 

96 ms 1126ms 

3.4 Real-World Threat 
We want to note that IIF is not only a theoretical threat. It has 

been used in real world either inadvertently or by design. Indeed, 
by manually analyzing malware samples provided by the Android 
Malware Genome Project [46], we found two samples leveraging 
IIF in a way similar to some of our PoCs. These two malware 
samples belong to the DroidKungFu3 family and the AnserverBot 
family respectively. TaintDroid cannot detect the sensitive data 
leaked by these two malware samples. Although we have not 
found the other IIF forms in real-world malware, we believe they 
are likely to be leveraged by malware in the future due to their 
effectiveness. 

3.4.1 IIF of DroidKungFu3 
DroidKungFu3 is an enhanced variant of DroidKungFu. During 

execution, it will send certain bits of the victim’s integrated circuit 
card identifier (i.e., ICCID) to a remote server. These specific bits 
contain useful information that can facilitate identifying the victim. 
Instead of directly sending these bits, DroidKungFu3 adopts IIF to 
encode each bit. The following shows the highly simplified IIF-
related code of DroidKungFu3. We can see that it leverages the if-
based IIF in a way similar to our PoC shown in Figure 5. 

 

3.4.2 IIF of AnserverBot 
AnserverBot is another malware we found that leverages IIF. 

During execution, it will send the victim’s international mobile 
equipment identity (IMEI) string to a remoter server. Instead of 
directly sending IMEI, AnserverBot adopts IIF to encode each 

character as the index of its occurrence in a character map. The 
encoding is implemented by invoking method String.indexOf(), 
whose highly simplified code is shown in the following. We can 
see that it leverages if-based IIF, similar to our PoC in Figure 6. 

 

4. MITIGATION 
From the previous discussion, we can see that IIF poses a 

serious practical threat to data confidentiality. In theory, it is 
intractable to perform sound and complete IIF tracking. In this 
paper, we propose a solution concentrating on tracking 1-2-1 IIF, 
since such IIF can precisely transmit sensitive data and hence is 
more likely to be exploited by real-world malware. 

A key observation is that 1-2-1 IIF can be formulated as a 
special kind of control dependence called strict control 
dependence (SCD) [42]. A statement s is strictly control dependent 
on a predicate p with vp as the predicate variable, if the execution 
of s can precisely infer the value of vp. The branch leading to the 
execution of s is called the SCD branch. Consider the example in 
Figure 15a. If the assignment statement at line 03 is executed, the 
attacker can precisely infer the value of the predicate variable 
secret in predicate at line 02 is 1. Thus, there is an SCD between 
the assignment statement and the if statement. The true branch of 
the if statement is the SCD branch. As a counter example, consider 
the code snippet in Figure 15b. There is control dependence 
between the assignment statement at line 03 and the if statement at 
line 02. However, from the execution of the assignment statement, 
we can only infer that the predicate variable is larger than 1. Little 
information is revealed. Thus, this control dependence is not SCD. 

 
Figure 15.  An example of SCD and non-SCD. 

4.1 Overview 
The overview of our solution is shown in Figure 16. Given an 

application or a library, we first perform static analysis on its 
bytecode to compute control flow graph (CFG), post dominator 
tree (PDT), and static single assignment (SSA). The computed 
information is used in generating SCD tracking code. Then we 
instrument the application or library with SCD tracking, along 
with the traditional DTA to track information flow through data 
dependence [37, 45]. The static analysis and instrumentation are 
performed on a desktop computer. The instrumented application 
or library will be installed and executed on the smartphone device. 

 

if (secret.equals("0")) public = 0; 
else if (secret.equals("1")) public = 1; 
...... 
 

public int indexOf(char ch) { 
int index; 
for (index = 0; index < length; index++) 

if (value[index] == ch) break; 
return index; 

} 

01 public = 0;                    01 public = 0; 
02 if (secret == 1) {             02 if (secret > 1) { 
03     public = 1;                03     public = 1; 
04 }                              04 } 
05 output(public);                05 output(public) 

a. SCD                            b. non-SCD 

1. Static Analysis 

 CFG 
PDT 
SSA 

2. Instrumentation 

SCD Tracking  
Code 

Traditional  
DTA Code 

 

Original 
Apk/Lib 

Instrumented 
Apk/Lib 

 Taint-Related 
Methods 

Fig. 2. Workflow of the Instrumentor tool.

manifest file is modified to alter the entry class of the target
application, making it point to the reference hijacking proce-
dure. Finally, these modified files along with the remaining
resource files are packed, generating the instrumented ap-
plication. The generated application will be installed on the
device as the substitution of the original counterpart.

Fig. 1 (b) shows the instrumentation procedure of a
system class library. First, the system class library file is
exported from the device. Then, the Instrumentor tool is
used to instrument the original system class library with
the taint enforcement code, generating the instrumented
system class library file. Finally, the instrumented system
class library file is imported into the device and placed in
a specific folder. This folder is set to be readable but non-
writable for normal application processes. As a result, the
instrumented system class library file can be securely shared
by all applications for space saving 3.

The overall workflow of the Instrumentor tool is shown
in Fig. 2. Given an application or a library, Instrumentor
first performs static analysis to identify the taint-related
methods, as well as computes auxiliary information, such
as control flow graph (CFG), post dominator tree (PDT), and
static single assignment (SSA). Then, the identified methods
are instrumented with the traditional data flow tracking
code (detailed in Section 4.2) and strict control dependence
tracking code generated under the help of the auxiliary
information (detailed in Section 4.3).

When the instrumented application runs on the device,
the customized RHApplication class is instantiated and
its class initialization method is invoked to execute the
RHZygote program. As a result, reference hijacking will be
adopted to reconstruct a new execution environment for the
target application, in which the instrumented system class
libraries are referenced instead of the original ones. During
the application execution, the taint enforcement code is exe-
cuted to enforce the taint tracking functionality. Specifically,
when the application accesses private information, taint tags
are attached to the variables storing the private data. These
taint tags are propagated to other variables whose values
are transitively derived from the tainted variables. When the
tainted data are about to go out of the application scope, a
dialog box is shown to inform the analysts about the source,
destination and content of the tainted data.

3. We package the instrumented libraries into an assistant application
as its asset files. When the assistant application is installed on the
device, these libraries will be released to a private folder of the ap-
plication, which is set readable but non-writable for other applications.
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Fig. 3. Taint tag storage for local variables and formal parameters.
Shadow registers are presented as grayed boxes.

4 DESIGN AND IMPLEMENTATION

TaintMan provides an effective and efficient application-
wide, instruction-level, variable-granularity dynamic taint
analysis for Android applications. This section illustrates
the detailed design and implementation issues of TaintMan,
including: (1) how to store taint tags; (2) how to implement
taint tracking for data dependence and strict control de-
pendence; (3) how to enforce on-demand instrumentation
and on-demand tracking optimization; and (4) how to re-
construct the execution environment for referencing to the
instrumented underlying libraries.

4.1 Taint Tag Storage

TaintMan provides a 32-bit vector for each Dalvik variable
to encode taint tag, allowing at most 32 different taint
markings. Instead of directly modifying the internal runtime data
structure to allocate extra space for taint tags, TaintMan requests
taint storage by declaring extra variables in the bytecode. Great
efforts need to be taken to ensure that the taint variables can
be accessed directly within the application context, and to
ensure that the allocation of taint variables would not violate
the semantic restrictions of the Dalvik bytecode language.

4.1.1 Local Variables and Formal Parameters
In Dalvik, both local variables and formal parameters are
stored in the registers allocated on an internal stack. When
a method is invoked, a new stack frame is created for its
registers. Particularly, a method‘s k formal parameters are
always located in the last k registers of the stack frame.
In order to store the taint tags for each local variable and
formal parameter in the stack frame, we should expand the
stack frame to twice as large as its original size by doubling
the number of the method‘s requested registers. Besides, an
extra register is allocated, which will be used as a temporary
register during taint propagation. Note that the expansion of
the stack frame only impacts the number of local registers
and has no impact on the number of parameters. The taint
tags of parameters are stored in the expanded stack frame as
normal local registers. Consequently, the method prototype
remains unchanged.

Fig. 3 illustrates how taint tags are stored for local vari-
ables and formal parameters. Given a method requesting
two registers for a single local variable and a single formal
parameter, the original stack frame of the method is shown
in Fig. 3 (a). After increasing the number of the requested
registers, the expanded stack frame stores five registers,
as shown in Fig. 3 (b). Formal parameter para0 stored in
register v1 of the original stack frame will be stored in
register v4 of the expanded stack frame. This may lead to
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application crash when it accesses para0 via its original
register index. To solve this problem, the value of register v4
is moved to register v1. The final stack frame is arranged as
shown in Fig. 3 (c). The original registers are placed at the
top of the frame, followed by an extra temporary register,
and the taint tags of the original registers are stored in the
shadow registers placed at the bottom of the stack frame.

4.1.2 Actual Parameters, Return Value and Exception
Actual parameters are also passed via the internal stack.
Before invoking a method, the caller places the actual
parameters on the top area of its stack frame, which is
overlapped with the callee‘s stack frame, so that they will
become the callee‘s formal parameters. A natural idea is to
allocate taint tag storage in the overlapped area. However,
this requires declaring additional parameters in the method
prototype, which may result in extensive modifications of
the original application instructions. In TaintMan, we take
a different approach: place the taint tags of the caller‘s
actual parameters in a global taint tag list. In this way,
we keep the method prototype unchanged, which is very
useful for not breaking features like reflection. The return
value (if executed normally) and the thrown exception (if
executed abnormally) of a method are stored in special
internal variables maintained by the runtime. We also place
their taint tags in the global taint tag list.

In order to support recursive method invocations, the
taint tag list should be reusable at each call site and return
site. To this end, at the entry of the callee, the taint tags of
actual parameters are taken from the taint tag list and stored
in the formal parameters‘ shadow registers. When the flow
returns to the caller, the taint tag of the return value or the
thrown exception is taken from the taint tag list and stored
in the corresponding shadow register. As such, the taint tag
list can be reused for the subsequent method invocations.

In a multi-threaded program, there may be more than
one thread invoking the same method at the same time. As
a result, the taint tag list may be simultaneously read or
written by multiple threads. To ensure data consistency, the
taint tag list should be thread-specific. In Java, each thread
corresponds to a Thread instance and can be correlated
with a ThreadLocal object to store thread-specific data. An
intuitive way is to store the taint tag list for each thread in
a ThreadLocal object. However, it is not very efficient, since
accessing ThreadLocal storage involves method invocations
and hash mappings. To this end, we store the taint tag list
for each thread in an instance field additionally inserted into
the Thread class, in which the access only requires a simple
field operation.

4.1.3 Class Fields
Taint tag storage is allocated for each class field (static or
instance) by inserting a shadow field into the class. There
is a caveat that the Android runtime has some restrictions
on the structure of certain system classes. Specifically, the
runtime restricts that the value field of the String class should
be placed at a fixed offset of the class structure and the
wrapper classes (e.g., Integer) should have only one instance
field. Inserting shadow fields into these classes may violate
the restrictions, resulting in abnormal termination of the ap-
plication. In order not to violate the field offset restrictions,

shadow fields should be placed after all of the original fields.
Since the class fields are arranged according to the alphabet
order of field name, this can be achieved by prefixing the
names of the shadow fields with the composition of the last
element in the alphabet set (e.g., “zzz ”). To avoid violating
the field number restrictions for wrapper classes, we create
a new class named TMObject that contains the shadow field,
and make it the super class of the wrapper classes. In this
way, the wrapper classes can inherit the shadow field from
TMObject without increasing the field number.

4.1.4 Arrays
We store only one taint tag per array to minimize storage
overhead. In Dalvik, array is a built-in class. We cannot
add an additional shadow filed to the array class, nor can
we make the array class inherit from an extra super class
containing shadow fields. To this end, we maintain a taint
hash map between array objects and taint tags. A hash item
is created only when an array is actually tainted. In Java,
String is a frequently used class. The data of a String object
is stored as a character array referenced by its value field. We
define the taint of a String object as the taint of the character
array referenced by its value field.

4.2 Tracking Data Dependence
TaintMan adopts the classic taint propagation logic for
tracking data dependence: given an instruction, the taint
value of its destination operand is set to the union of the
taint values associated with its source operand(s). TaintMan
implements taint propagation logic by adding taint enforcement
code into the target bytecode file itself, rather than into the runtime
interpreter or emulator. The instrumented taint enforcement
code is written as Dalvik instructions. In general, the fewer
taint enforcement instructions are used, the less overhead is
incurred. Hence, it is expected to use as few instructions as
possible to implement the taint propagation logic. The taint
propagation logic for an instruction can be further refined
to more specific ones with consideration of the relationship
among operands. Generally, the refined taint propagation
logic requires fewer taint enforcement instructions than the
original one.

The taint propagation logic for tracking data dependence
is shown in Table 1. In the table, τ(v) is the taint map
returning the taint tag of variable v. For concise represen-
tation, we group the instructions with similar operational
semantics into a single abstract instruction. Since the origi-
nal implementation of TaintMan [21], we further refine the
taint propagation logic for each kind of instruction and
elaborately design appropriate taint enforcement code for
the refined logic. In the rest of this subsection, we take the
binary operation instruction and the field access instruction
as examples to illustrate how to implement taint propaga-
tion logic for tracking data dependence.

4.2.1 Taint Propagation for Binary Operation
The operational semantic of the binary operation instruction
binary-op vA, vB , vC is vA ← vB ⊗ vC , meaning to perform
the specified binary operation on the two source registers
vB and vC , and store the result in the destination register
vA. The coarse taint propagation logic of the instruction is
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TABLE 1
Taint Propagation Logic for Tracking Data Dependence 

Rule Instruction Semantics 
Coarse Taint 

Propagation Logic 
Condition 

Refined Taint 

Propagation Logic Description 

D1 const-op vA, c vA ← c τ(vA) = 0 N/A τ(vA) = 0 Clear vA taint 

D2 move-op vA, vB vA ← vB τ(vA) = τ(vB) 
A = B N/A Do nothing 

A ≠ B τ(vA) = τ(vB) Set vA taint to vB taint 

D3 unary-op vA, vB vA ← ⊗vB τ(vA) = τ(vB) 
A = B N/A Do nothing 

A ≠ B τ(vA) = τ(vB) Set vA taint to vB taint 

D4 binary-op vA, vB, vC vA ← vB ⊗ vC τ(vA) = τ(vB) ∪ τ(vC) 

A = B = C N/A Do nothing 

B = C && A ≠ B τ(vA) = τ(vB) Set vA taint to vB taint 

A = B && A ≠ C τ(vA) |= τ(vC) Combine vC taint to vA taint 

A = C && A ≠ B τ(vA) |= τ(vB) Combine vB taint to vA taint 

A ≠ B ≠ C τ(vA) = τ(vB) ∪ τ(vC) Set vA taint to vB taint U vC taint 

D5 sget-op vA, f vA ← f τ(vA) = τ(f ) N/A τ(vA) = τ(f ) Set vA taint to field f taint 

D6 sput-op vA, f f ← vA τ(f ) = τ(vA) N/A τ(f ) = τ(vA) Set field f taint to vA taint 

D7 iget-op vA, vB, f vA ← vB.f τ(vA) = τ(vB) ∪ τ(vB.f) 
A = B τ(vA) |= τ(vB.f) Combine vB.f  taint to vA taint 

A ≠ B τ(vA) = τ(vB) ∪ τ(vB.f) Set vA taint to object vB taint U field vB.f  taint 

D8 iput-op vA, vB, f vB.f ← vA τ(vB.f) = τ(vA) 
A = B N/A Do nothing 

A ≠ B τ(vB.f) ← τ(vA) Set field vB.f  taint to vA taint 

D9 aget-op vA, vB, vC vA ← vB[vC] τ(vA) = τ(vB[●]) ∪ τ(vC) 

A = B && A ≠ C τ(vA) |= τ(vC) Combine index vC taint to vA taint 

A = C && A ≠ B τ(vA) |= τ(vB[●]) Combine array vB[●] taint to vA taint 

A ≠ B ≠ C τ(vA) = τ(vB[●]) ∪ τ(vC) Set vA taint to array vB[●] taint U index vC taint 

D10 aput-op vA, vB, vC vB[vC] ← vA τ(vB[●]) |= τ(vA) N/A τ(vB[●]) |= τ(vA) Combine vA taint to array vB[●] taint 

D11 return-op vA r ← vA τ(r) = τ(vA) N/A τ(r) = τ(vA) Set return value r taint to vA taint 

D12 move-result-op vA vA ← r τ(vA) = τ(r) N/A τ(vA) = τ(r) Set vA taint to return value r taint 

D13 invoke-op aparv , m fparv  ← aparv  τ( fparv ) = τ( aparv ) N/A τ( fparv ) = τ( aparv ) Set formal param taints to actual param taints 

D14 throw-op vA e ← vA 
τ(e) = τ(vA) N/A τ(e) = τ(vA) Set exception e taint to vA taint 

D15 move-exception-op vA vA ← e τ(vA) = τ(e) N/A τ(vA) = τ(e) Set vA taint to exception e taint 

 Register variables are denoted as vX , with X as the register index. Class static fields are denoted as f . Class instance fields are denoted as
vY .f , where vY is an instance object reference. Array variables are denoted as vZ [·], where vZ is an array object reference. vfpar and vapar
respectively stand for the formal parameter vector and the actual parameter vector. r is the return value and e is the thrown exception. c and
m stand for a constant and a method respectively. τ(v) is the taint map returning the taint tag of variable v.

τ(vA) = τ(vB) ∪ τ(vC), which can be refined as shown in
Rule D4 of Table 1. In particular, when the instruction takes
the same register as its source and destination operands (i.e.,
A = B = C), no taint propagation is needed. By refining
taint propagation logic in different conditions, we can sim-
plify the taint propagation operation as much as possible.

In the case that the binary-op instruction takes different
registers as its operands (i.e., A 6= B 6= C), the refined taint
propagation logic is still τ(vA) = τ(vB) ∪ τ(vC). This
propagation logic is primarily implemented by adding the
bitwise-OR instruction or-int vA′, vB ′, vC ′ before the binary-
op instruction. Here, vA′, vB ′ and vC ′ stand for the shadow
registers of vA, vB and vC respectively. Note that the or-int
instruction requires all of its operand registers are indexed
less than 256. If a certain shadow register is indexed higher
than or equal to 256, a lower-indexed register needs to be
selected as a substitute. The value of the shadow register
should be moved forward to and back from the substitute
register before and after the taint propagation.

According to different cases of the indexes of shadow
registers, the taint propagation logic τ(vA) = τ(vB)∪ τ(vC)
can be implemented by different compositions of taint en-
forcement instructions, as shown in Table 2. Take Case 8

as an example. In this case, the shadow registers vA′, vB ′

and vC
′ are all indexed higher than or equal to 256, while

the temporary register vT and the destination operand vA
of the binary-op instruction are indexed less than 256. We
select vT and vA as the substitute registers for vB ′ and vC

′

respectively, and reuse vA as the substitute register for vA′.
Since the current values of vT and vA have no effect on
the subsequent instructions after the instrumentation point,
there is no need to save and restore their values. The taint
enforcement instructions for Case 8 are composed of four
taint enforcement instructions, which occupy 17 bytes.

4.2.2 Taint Propagation for Field Operation
The operational semantic of the field access instruction iput-
op vA, vB , f is vB .f ← vA, meaning to store the value of
the source register vA to the instance field f of the specified
object in the destination register vB . The coarse taint prop-
agation logic of the instruction is τ(vB .f) = τ(vA), which
can be refined as shown in Rule D8 of Table 1. In particular,
when the instruction takes the same register as its source
and destination operands (i.e., A = B), no taint propagation
is needed, since the taint to be attached to the instance field
is implicated in the taint of the identified object.



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2740169, IEEE
Transactions on Dependable and Secure Computing

YOU et al.: TAINTMAN: AN ART-COMPATIBLE DYNAMIC TAINT ANALYSIS FRAMEWORK ON UNMODIFIED AND NON-ROOTED ANDROID DEVICES 7

TABLE 2
Enforcement of τ(vA) = τ(vB) ∪ τ(vC) in Different Cases 

Case Condition Taint Enforcement  
Instructions (TEIs) 

TEIs 
Count  

TEIs 
Bytes  

1 A' < 256 && B' < 256 
&& C' < 256 

or-int vA', vB', vC' 1 4 

2 
A' < 256 && B' ≥ 256 

&& C' < 256 
move/from16 vA', vB' 

or-int vA', vA', vC' 
2 8 

3 
A' < 256 && B' < 256 

&& C' ≥ 256 
move/from16 vA', vC' 

or-int vA', vA', vB' 
2 8 

4 
A' ≥ 256 && B' < 256 

&& C' < 256 
or-int vA, vB', vC' 
move/16 vA', vA 

2 9 

5 
A' < 256 && B' ≥ 256 

&& C' ≥ 256 

move/from16 vA', vB' 
move/from16 vA, vC' 

or-int vA', vA', vA 
3 12 

6 
A' ≥ 256 && B' ≥ 256 

&& C' < 256 

move/from16 vA, vB' 
or-int vA, vA, vC' 
move/16 vA', vA 

3 13 

7 
A' ≥ 256 && B' < 256 

&& C' ≥ 256 

move/from16 vA, vC' 
or-int vA, vA, vB' 
move/16 vA', vA 

3 13 

8 
A' ≥ 256 && B' ≥ 256 

&& C' ≥ 256  
&& T < 256 

move/from16 vT, vB' 
move/from16 vA, vC' 

or-int vA, vT, vA 

move/16 vA', vA 

4 17 

9 
A' ≥ 256 && B' ≥ 256 

&& C' ≥ 256 
&& T ≥ 256 

move/from16 vA, vB' 
move/16 vT, vC 

move/from16 vC, vC' 

or-int vA, vA, vC 
move/16 vA', vA 

move/from16 vC, vT 

6 22 

 

In the case that the iput-op instruction takes different
registers as its operands (i.e., A �= B), the refined taint
propagation logic is still τ(vB .f) = τ(vA). This propagation
logic is primarily implemented by adding the field setting
instruction iput vA

′, vB , f
′ before the iput-op instruction.

Here, vA
′ and f ′ respectively stand for the shadow reg-

ister of vA and the shadow field of f . Note that the iput
instruction requires all of its operand registers are indexed
less than 16. Table 3 shows the implementation of the taint
propagation logic τ(vB .f) = τ(vA) with consideration of
the indexes of shadow registers. Take Case 3 as an example,
where the shadow register vA

′ and the temporary register
vT are indexed higher than or equal to 16. We select vA as
the substitute register for vA

′. Since vA may be used after
the instrumentation point, we need to save and resume
its value before and after the taint propagation. The taint
enforcement instructions for Case 3 are composed of four
taint enforcement instructions, which occupy 12 bytes.

4.3 Tracking Strict Control Dependence

Compared with the explicit information flow, the implicit
information flow is more difficult to track. In general, it is
intractable to perform sound and complete tracking of IIF
[5]. In TaintMan, we mitigate the threat of IIF by develop-
ing a tracking algorithm based on our prior work [11] (a

TABLE 3
Enforcement of τ(vB .f) = τ(vA) in Different Cases

 

Case Condition Taint Enforcement  
Instructions (TEIs) 

TEIs 
Count  

TEIs 
Bytes  

1 A' < 16 iput vA', vB, f ' 1 3 

2 A' ≥ 16 && T < 16 
move/from16 vT, vA' 

iput vT, vB, f ' 
2 6 

3 A' ≥ 16 && T ≥ 16 

move/from16 vT, vA 

move/from16 vA, vA' 
iput vA, vB, f ' 

move/from16 vA, vT 

 

4 12 
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alarm. That means, all of these PoCs can successfully transmit 
sensitive data and evade the protection. 

The performance evaluation measures each PoC from four 
aspects: the code size increment, memory consumption increment, 
and the time consumption in transmitting a small amount of data 
(here we use phone number) and a large amount of data (here we 
use 1M randomly-generated data). The evaluation result is shown 
in Table 2. Overall, these PoCs incur less than 0.3% application 
size increment, and less than 2% memory consumption increment. 
All PoCs can efficiently transmit data. The time consumption of 
these PoCs (as part of FMajor) in transmitting phone number is 
less than 0.1 second. We also evaluate these PoCs in transmitting 
1M data. We can see that even the least efficient PoC can transmit 
1M data in about 1 second. 

Table 2. Performance of PoCs. 

PoC Size 
Increment 

Memory 
Increment 

Sending 
PN 

Sending 
1M Data 

if-based IIF 
(in nesting manner) 

0.4 KB 
(0.06%↑) 

11.3 KB 
(0.18%↑) 42 ms 294 ms 

if-based IIF 
(in looping manner) 

0.3 KB 
(0.05%↑) 

8.2 KB 
(0.13%↑) 45 ms 303 ms 

switch-based IIF 0.4 KB 
(0.06%↑) 

10.2 KB 
(0.16%↑) 37 ms 283 ms 

exception-prone-based IIF 0.4 KB 
(0.06%↑) 

28.7 KB 
(0.46%↑) 51 ms 391 ms 

throw-based IIF 0.9 KB 
(0.14%↑) 

55.3 KB 
(0.89%↑) 49 ms 314 ms 

polymorphism-based IIF 
(via virtual invocation) 

1.1 KB 
(0.17%↑) 

69.6 KB 
(1.12%↑) 47 ms 310 ms 

polymorphism-based IIF 
( via reflective invocation) 

0.7 KB 
(0.11%↑) 

78.8 KB 
(1.27%↑) 49 ms 596 ms 

polymorphism-based IIF 
(via message dispatching) 

1.4 KB 
(0.21%↑) 

84.0 KB 
(1.35%↑) 57 ms 844ms 

polymorphism-based IIF 
(via event dispatching) 

1.9 KB 
(0.29%↑) 

109.6 KB 
(1.76%↑) 

96 ms 1126ms 

3.4 Real-World Threat 
We want to note that IIF is not only a theoretical threat. It has 

been used in real world either inadvertently or by design. Indeed, 
by manually analyzing malware samples provided by the Android 
Malware Genome Project [46], we found two samples leveraging 
IIF in a way similar to some of our PoCs. These two malware 
samples belong to the DroidKungFu3 family and the AnserverBot 
family respectively. TaintDroid cannot detect the sensitive data 
leaked by these two malware samples. Although we have not 
found the other IIF forms in real-world malware, we believe they 
are likely to be leveraged by malware in the future due to their 
effectiveness. 

3.4.1 IIF of DroidKungFu3 
DroidKungFu3 is an enhanced variant of DroidKungFu. During 

execution, it will send certain bits of the victim’s integrated circuit 
card identifier (i.e., ICCID) to a remote server. These specific bits 
contain useful information that can facilitate identifying the victim. 
Instead of directly sending these bits, DroidKungFu3 adopts IIF to 
encode each bit. The following shows the highly simplified IIF-
related code of DroidKungFu3. We can see that it leverages the if-
based IIF in a way similar to our PoC shown in Figure 5. 

 

3.4.2 IIF of AnserverBot 
AnserverBot is another malware we found that leverages IIF. 

During execution, it will send the victim’s international mobile 
equipment identity (IMEI) string to a remoter server. Instead of 
directly sending IMEI, AnserverBot adopts IIF to encode each 

character as the index of its occurrence in a character map. The 
encoding is implemented by invoking method String.indexOf(), 
whose highly simplified code is shown in the following. We can 
see that it leverages if-based IIF, similar to our PoC in Figure 6. 

 

4. MITIGATION 
From the previous discussion, we can see that IIF poses a 

serious practical threat to data confidentiality. In theory, it is 
intractable to perform sound and complete IIF tracking. In this 
paper, we propose a solution concentrating on tracking 1-2-1 IIF, 
since such IIF can precisely transmit sensitive data and hence is 
more likely to be exploited by real-world malware. 

A key observation is that 1-2-1 IIF can be formulated as a 
special kind of control dependence called strict control 
dependence (SCD) [42]. A statement s is strictly control dependent 
on a predicate p with vp as the predicate variable, if the execution 
of s can precisely infer the value of vp. The branch leading to the 
execution of s is called the SCD branch. Consider the example in 
Figure 15a. If the assignment statement at line 03 is executed, the 
attacker can precisely infer the value of the predicate variable 
secret in predicate at line 02 is 1. Thus, there is an SCD between 
the assignment statement and the if statement. The true branch of 
the if statement is the SCD branch. As a counter example, consider 
the code snippet in Figure 15b. There is control dependence 
between the assignment statement at line 03 and the if statement at 
line 02. However, from the execution of the assignment statement, 
we can only infer that the predicate variable is larger than 1. Little 
information is revealed. Thus, this control dependence is not SCD. 

 
Figure 15.  An example of SCD and non-SCD. 

4.1 Overview 
The overview of our solution is shown in Figure 16. Given an 

application or a library, we first perform static analysis on its 
bytecode to compute control flow graph (CFG), post dominator 
tree (PDT), and static single assignment (SSA). The computed 
information is used in generating SCD tracking code. Then we 
instrument the application or library with SCD tracking, along 
with the traditional DTA to track information flow through data 
dependence [37, 45]. The static analysis and instrumentation are 
performed on a desktop computer. The instrumented application 
or library will be installed and executed on the smartphone device. 

 

if (secret.equals("0")) public = 0; 
else if (secret.equals("1")) public = 1; 
...... 
 

public int indexOf(char ch) { 
int index; 
for (index = 0; index < length; index++) 

if (value[index] == ch) break; 
return index; 

} 

01 public = 0;                    01 public = 0; 
02 if (secret == 1) {             02 if (secret > 1) { 
03     public = 1;                03     public = 1; 
04 }                              04 } 
05 output(public);                05 output(public) 

(a). SCD                        (b). non-SCD 

1. Static Analysis 

 CFG 
PDT 
SSA 

2. Instrumentation 

SCD Tracking  
Code 

Traditional  
DTA Code 

 

Original 
Apk/Lib 

Instrumented 
Apk/Lib 

 Taint-Related 
Methods 

Fig. 4. Example of SCD and non-SCD.

short paper). The algorithm tracks a special kind of control
dependence called strict control dependence, whose nature
highly resembles that of data dependence and hence is most
likely to be leveraged for attacks. The basic idea of the
SCD tracking algorithm is to selectively taint a predicate
if it has strong correlation with sensitive information. All
assignments guarded by such a tainted predicate are tainted.
For better efficiency, we adopt a lazy tainting policy, which
postpones the tainting of control dependence to the post-
dominator of a control structure.

4.3.1 Identifying SCD Branches

A statement s is strictly control dependent on a predicate
p with vp the predicate variable, if the execution of s
can precisely infer the value of vp. The branch leading to
the execution of s is called the SCD branch. Consider the
example in Fig. 4 (a). If the assignment statement at line
03 is executed, the attacker can precisely infer the value
of the predicate variable secret in predicate at line 02 is 1.
Thus, there is an SCD between the assignment statement
and the if statement. The true branch of the if statement is
the SCD branch. As a counter example, consider the code
snippet in Fig. 4 (b). There is control dependence between
the assignment statement at line 03 and the if statement
at line 02. However, from the execution of the assignment
statement, we can only infer that the predicate variable secret
is larger than 1. Little information is revealed. Thus, this
control dependence is not SCD.

The first step of SCD tracking is to identify SCD branches
through static analysis. Currently, our analysis only concen-
trates on SCDs caused by equivalence testing. It first consid-
ers the common conditional structures. For an if structure, if
it is an equivalence test (i.e., ==), the true branch is an SCD
branch; or if it is a non-equivalence predicate (i.e., !=), the
false branch is an SCD branch. For a switch structure, if a
branch can be reached from only one case value, it is an SCD
branch. We also handle other IIF-inducing control structures
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data dependence and strict control dependence. We evaluate the 
effectiveness and performance of our prototype system. 

 
Rule Event Instrumentation 

C1 Encountering a predicate statement: 
  is the predicate variable. 

t = τ( ); 

C2 

Encountering a post-dominator: 
variable x is attached with (       ); 
¬∃            corresponds to an SCD branch 
                and      and |  |  |  |. 

τ(x) = τ(x) | t; 

C3 

Encounter a statement s: 
s is contained in an SCD branch; 
s may immediately propagate the value outward  
to a global variable x. 

τ(x) = τ(x) | t; 

Figure 18.  Rules for SCD-based tainting. Here, τ(x) is the taint 
of variable x, and |xi| denotes the value of variable x of version i.  

4.3.1 Effectiveness 
Our prototype can successfully detect all the aforementioned 1-

2-1 IIF exploit PoCs, as well as the real-world malware samples. 
Here we present a case study of how our prototype detects the 

PoC of polymorphism-based IIF via virtual method invocation. 
During instrumentation, the polymorphism structure in this PoC is 
automatically converted into a switch structure. As an example, 
Figure 19 shows how to convert the polymorphic structure shown 
in Figure 10 (with the bold font) to a switch structure. In particular, 
when encountering a virtual invocation instruction, our technique 
traverses the class hierarchy of the receiver object. If a subclass of 
the static type of the receiver object overwrites the target method, 
an (SCD) branch is introduced to invoke the corresponding 
method in the subclass. As a result, all the branches are 
instrumented with SCD tracking code. 

 
Figure 19.  Example of converting the polymorphic structure 
shown in Figure 10 (with the bold font) to a switch structure. 

Figure 20 depicts the tracking of the above example. At runtime, 
when executing poly = polys[secret-'0'];, the taint of 
secret will be propagated to poly according to the data dependence 
(DD) tracking rule. The subsequent virtual invocation statement 
uses poly as the receiver object. At the call site, the taint of poly 
will be stored in a temporary variable according to the SCD 
tracking rule T1. At the return site, the taint of the return value 
public will first be cleared by DD tracing rule since it is a constant; 
the taint will then be affected by the temporary variable (which 
records the taint of predicate variable poly) according to the SCD 
tracking rule T2. Here we can see that the taint of secret will be 
propagated to public. As such, we can detect privacy leakage via 
polymorphic invocation. 

 
Figure 20.  SCD-based tracking of polymorphic-base IIF. 

4.3.2 Performance 
We evaluate the performance overhead incurred by our 

prototype on subject applications. Here we choose the 
aforementioned potentially malicious application FMajor, the two 
malware samples (i.e., DroidKungFu3 and AnserverBot) and 
some representative applications collected from HTC Store [44] 
as subjects. HTC Store classifies applications into 15 categories. 
We randomly selected popular applications from each category. 
The evaluation result is shown in Table 3. Note that during 
execution, DroidKungFu3 and AnserverBot will leak IMEI and 
ICCID respectively via IIF (detailed in §3.4). Some other 
applications (e.g., SecNews and FMajor) leak IMEI or phone 
number via EIF. We compare the code size before and after 
instrumentation, and find that the instrumented versions are 
averagely 40% larger than the original apps. Note that the 
instrumentation involves both data dependence (DD) and SCD 
tracking. We also compare the execution times of the native runs 
(without any tracking), the runs with DD-only tracking, and the 
runs with DD+SCD tracking. For interactive applications, the 
execution time is measured on a normal functionality of the app. 
For example, the execution time of FMajor is measured from user 
clicks the “play” button to the finish of the game session loading. 
Observe that the (DD+SCD) runtime overhead (compared with 
native runs) is approximately 65% on average. By comparing with 
the DD-only runtime overhead, SCD tracking increases the 
overhead by 30% at most. As a comparison, Dytan [18], which 
blindly tracks IIF, brings approximate 50x performance overhead. 
We argue that the performance overhead of our prototype system 
is acceptable. 

Table 3. Performance of SCD-based tracking. 

Test of Example Privacy 
Leakage 

Application Size Execution Time 

Original Instrumented Original DD-only 
Tracking 

DD+SCD 
Tracking 

FMajor PN 
(via EIF) 637.4 KB 871.0 KB 

(36.6%↑) 457 ms 587 ms 
(28.4%↑) 

660 ms 
(44.4%↑) 

DroidKungFu3 ICCID 
(via IIF) 187.9 KB 277.7 KB 

(47.8%↑) 544 ms 713 ms 
(31.1%↑) 

858 ms 
(57.7%↑) 

AnserverBot IMEI 
(via IIF) 1756.8 KB 2515.7 KB 

(43.2%↑) 613 ms 838 ms 
(36.7%↑) 

946 ms 
(54.3%↑) 

GunShots -- 1508.5 KB 1739.8 KB 
(15.3%↑) 462 ms 542 ms 

(17.3%↑) 
559 ms 

(21.0%↑) 

OpeyesSister IMEI 
(via EIF) 2147.4 KB 2820.7 KB 

(31.4%↑) 382 ms 473 ms 
(23.8%↑) 

547 ms 
(43.2%↑) 

SportStrackLive -- 2930.3 KB 3327.3 KB 
(13.5%↑) 737 ms 1022 ms 

(38.7%↑) 
1123 ms 
(52.4%↑) 

SexHealth IMEI 
(via EIF) 240.5 KB 341.8 KB 

(42.1%↑) 213 ms 303 ms 
(42.3%↑) 

331 ms 
(55.4%↑) 

FakeEvent -- 1144.9 KB 1557.9 KB 
(36.1%↑) 522 ms 672 ms 

(28.7%↑) 
831 ms 

(59.2%↑) 

SmartCompass -- 584.5 KB 979.5 KB 
(67.6%↑) 434 ms 536 ms 

(23.5%↑) 
578 ms 

(33.2%↑) 

LiveWallPaper IMEI 
(via EIF) 1847.2 KB 2006.0 KB 

(8.6%↑) 784 ms 1154 ms 
(47.2%↑) 

1267 ms 
(61.6%↑) 

TuoYanXinLiXue -- 1186.8 KB 1265.9 KB 
(6.7%↑) 123 ms 143 ms 

(16.3%↑) 
166 ms 

(35.0%↑) 

poly = polys[secret -'0']; 
public = poly.f(); 
 

poly = polys[secret -'0']; 
switch (typeOf(poly)) { 
case Poly0:  
public = Poly0.f(); break; 

case Poly1:  
public = Poly1.f(); break; 

  …… 
} 

 

Original Polymorphism Structure                          Converted Switch Structure 
 

poly = polys[secret-'0']; 
switch(typeOf(poly)) 

case Poly0: 
  public0= 
  Poly0.f(); … 

publicn=(public0,public1,…,public9); 

CFG of the Converted Switch Structure in SSA Form                 Runtime Action 
 

case Poly9: 
  public9= 
  Poly9.f(); 

case Poly1: 
  public1= 
  Poly1.f(); 

τ(poly) = τ(secret);  // DD Rule 
t = τ(poly);  //SCD Rule T1 
 
 
// DD Rule 
// the return value is a constant 
τ(public) = 0; 
 

//SCD Rule T2 
τ(public) = τ(public) | t;   
 

Fig. 5. Rules for lazy strict control dependencee tainting. |xi| denotes
the value of variable x of version i in SSA representation.

(e.g., exception-prone instructions and polymorphic method
invocations) by explicitly converting them into either the if
structure or the switch structure, depending on the number
of their branches. The explicit if or switch statements are
further instrumented to track SCD.

4.3.2 Lazy Tainting Policy
For better performance, we propose a lazy tainting policy,
instead of on-the-fly tainting. The lazy tainting policy is
implemented with the information of CFG, PDT and SSA
computed during the static analysis phase. More specifically,
we leverage CFG and PDT to determine the effective scope
of a control structure, and leverage SSA to understand
the assignments of variables in different branches. In SSA
representation, each assignment of a variable generates a
new version for the variable. If a variable has different
assignments in different branches, a Φ function is added at
the merge node (i.e. the immediate post-dominator), which
lists the versions of the variable along each branch.

The rules for lazy strict control dependence tainting are
shown in Fig. 5. When encountering a predicate statement,
the taint of the predicate variable is stored in a temporary
variable (Rule C1). At each immediate post-dominator, the
algorithm examines each variable that is assigned in an SCD
branch to check whether its value is distinctive from other
branches. If so, it will propagate the taint of the current
control structure to the identified variable (Rule C2).There is
a special consideration for the lazy tainting policy. An SCD
branch may contain some assignment statements whose val-
ues may immediately escape the branch (e.g. assignments to
global variables). When encountering these statements in an
SCD branch, we propagate taints immediately (Rule C3).

4.4 Optimization

To reduce performance overhead, we enforce on-demand
instrumentation (before execution) and on-demand tracking
(at runtime) to avoid unnecessary taint analysis whenever
possible. In such a two-staged optimization solution, we
first preliminarily identify the potential taint-related meth-
ods in a light-weight fashion, then make a precise tracking
decision depending on the taint situation at runtime. It
enables us to achieve the same optimization goal as [22]
without heavy and complex global static data flow analysis.

4.4.1 On-Demand Instrumentation
With regard to taint analysis, methods can be divided into
three categories: source-related APIs that can introduce new

TABLE 4
Effect of Dalvik Instructions on Data

Instruction Semantics Effects on Data Type 

const-op vA, c vA ← c Reset data DPI 
move-op vA, vB vA ← vB Propagate within method DPI 
unary-op vA, vB vA ← vA ⊗ vB Propagate within method DPI 

binary-op vA, vB, vC vA ← vB ⊗ vC Propagate within method DPI 
sget-op vA, f vA ← f Import from static field DII 

iget-op vA, vB, f vA ← vB(f) Import from instance field DII 
aget-op vA, vB, vC vA ← vB[vC] Import from array DII 
move-result-op vA vA ← r Import from return value DII 

move-exception-op vA vA ← e Import from exception site DII 
sput-op vA, f f ← vA Export to static field DEI 

iput-op vA, vB, f vB(f) ← vA Export to instance field DEI 
aput-op vA, vB, vC vB[vC] ← vA Export to array DEI 

return-op vA r ← vA Export to return value DEI 
invoke-op aparv , m  fparv  ← aparv Export to callee DEI 

throw-op vA e ← vA Export to exception handler DEI 

taints into the application, sink-related APIs that can trans-
mit taints out of the application, and other methods that
can only propagate taints within the application. A method
needs to be instrumented only if it may exist in an execution
path from a source-related API to a sink-related API. For
programs written in a Java-like feature-rich language, it
is very difficult, if not impossible, to identify all possible
source-to-sink paths. To this end, we propose a conservative
approach based on the observation: a method may exist in
a source-to-sink path, only if it could import tainted data
from and export tainted data to the outside of the method.

In Android, data importation and exportation of a
method have to be conducted by passing parameters or
executing special Dalvik instructions. We analyze the Dalvik
bytecode language to learn the effect of instructions on data.
The analysis result is shown in Table 4. According to their
effects on data, the Dalvik instructions can be categorized
into three types: (1) data-propagation instructions (DPIs)
that propagate data within the method; (2) data-importation
instructions (DIIs) that import data from the outside of the
method; and (3) data-exportation instructions (DEIs) that
export data to the outside of the method 4.

Note that in addition to normal data flow, taints can
also be propagated through exceptional data flow. The
throw-op instruction exports data as an exception object to
the exception handler, and the move-exception-op instruction
imports data as an exception object from the exception site.
The exception site and the exception handler may locate
across the method boundary, and hence we treat throw-op
instruction as an DEI and move-exception-op as an DII.

Based on the above analysis, we believe that a method
needs to be instrumented only if it satisfies the following
two conditions: (1) It has parameter(s) or contains at least
one DII; and (2) It contains at least one DEI. A light-weight
static analysis is performed before the instrumentation to
identify the methods satisfying both of the above conditions.
Only the identified methods are instrumented.

4. DIIs and DEIs can be treated as method-local sources and sinks
proposed in [23]. In TaintMain, we focus on their effect on data
propagation for optimization purpose.
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0000: sget-op vA, f //DII
0004: binary-op vB, vA, C //DPI
0008: sput-op vB, f //DEI
000c: return-void

(a) Before Instrumentation (b) After Instrumentation

Tracked Version
0015: sget-op vA', f' //Rule D5
0019: sget-op vA, f
:track_label
001d: move-op vB', vA' //Rule D4
001f: binary-op vB, vA, C
0023: sput-op vB', f' //Rule D6
0027: sput-op vB, f
002b: goto :exit

Non-Tracked Version
0000: sget-op vA', f ' //Rule D5
0004: sget-op vA, f
0008: if-nez vA', :track_label
000c: binary-op vB, vA, C
0010: sput-op vB, f
0014: goto :exit

:entry
check taint status of parameters

:exit
update taint status of return value

Fig. 6. Instrumentation of method Logger$Stream.endIndent() for en-
forcing on-demand tracking. Taint tags of register vX and field f are
denoted as vX

′ and f ′ respectively.

4.4.2 On-Demand Tracking
Even if a method could propagate taints across the method
scope (thus needs to be instrumented), it will not always
propagate taints on each execution instance. Indeed, only
when a method actually imports taints at runtime, can it
actually propagate taints. It means that an instrumented
method does not need to be tracked until the first time
it imports taints from the outside. Based on this idea, we
propose the on-demand tracking technique to reduce the
runtime overhead. For each instrumented method, there are
two versions of its bytecode: a non-tracked version and a
tracked version. When invoking a method, its non-tracked
version is executed by default. The control will transfer to
the tracked version when any taint is actually imported.

The non-tracked version and the tracked version coexist
in the instrumented method 5. In the non-tracked version,
only DIIs are monitored. Specifically, a conditional transfer
instruction is added after each DII to transfer the control
to the tracked version in the case that the imported data is
tainted. The conditional transfer instruction uses a symbolic
address (i.e., label) as its target address to avoid the complex
offset computation. In the tracked version, all DPIs, DEIs
and DIIs are monitored with taint enforcement code. For
ease of transfer from the non-tracked version, we introduce
a label after each DII. The execution logic of the original
method still remains unchanged, even if the control trans-
fers from the non-tracked version to the tracked version.

Take the system class method Logger$Stream.endIndent()
as an example. This method is to get a value from a static
field f , perform a binary operation, and put the result back
to the static field f . As shown in Fig. 6, the original method
bytecode contains sget-op, binary-op, sput-op and return-void

5. The tracked version is placed next to the non-tracked version. To
ensure the instrumented method has a single entry and a single exit, we
wrap it with an operation at the start to check the taint of parameters,
and an operation at the end to update the taint of the return value.

pid

AMS Zygote

Application Process

2. startProcess()
3. fork()

startComponent
(AppInfo, CompInfo)1.

7. bindApplication(AppInfo)

10. launchComponent(CompInfo)

b. exec(RHZygote)
a. storeCompInfo(CompInfo)

i. CompInfo = loadCompInfo()

c. setEnvironmentVariables()

5. attachApplication()

BIND_APPLICATION (AppInfo)
LAUNCH_COMPONENT (CompInfo)

6.

f. attachApplication()

4. startAppThread()

h. bindApplication(AppInfo)

d. restartRuntimeInstance()
e. restartAppThread()

g. BIND_APPLICATION (AppInfo)

Environment Reset Procedure

8. Application.<clinit>()

9. Application.onCreate()

Fig. 7. Sequence diagram of the application startup process. Additional
steps introduced by the environment reset procedure are outlined with a
dashed rectangle.

instructions. After instrumentation, there are two versions
of the method bytecode. In the non-tracked version, only
the sget-op instruction is monitored by a conditional control
transfer instruction (at Offset 0x0008). In the tracked version,
all the sget-op, binary-op, and sput-op instructions are moni-
tored with taint enforcement code. Besides, a label (before
Offset 0x001d) is introduced after the sget-op instruction. At
runtime, when the sget-op vA, f instruction imports taints
from the static field f , the control will transfer from Offset
0x0008 in the non-tracked version to Offset 0x001d in the
tracked version.

4.5 Reference Hijacking

The goal of reference hijacking is to take control over the
reference of the target application to the underlying system
class libraries, so that it can be redirected to the instru-
mented alternatives 6. It is mainly achieved via a special
environment reconstruction procedure. By modifying the
application startup process, additional operations are intro-
duced to drive the application to restart with new environ-
ment variables (e.g., the library path). After restarting, the
target application will be executed in a new execution en-
vironment, in which the instrumented system class libraries
are referenced instead of the original ones.

Fig. 7 depicts the startup process of an application.
First, a startComponent request is sent to AMS with the
information about the target application and the target
component (Step 1). AMS then creates a new process for
the target application by sending a startProcess request to
Zygote (Step 2), making it fork a child process (Step 3).
The forked process inherits the execution environment from
Zygote and starts an application thread (Step 4), which

6. System libraries are the core of the runtime environment, which
can be fully taken control of by reference hijacking. In addition to
system libraries, the runtime environment includes the OS kernel and
system services (e.g., the Activity Manager Service), which are beyond
the control of reference hijacking.
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Fig. 6. TaintMan can successfully detect privacy leakage.

(a) Privacy Leakage via Excplicit Information Flow                  (b) Privacy Leakage via Implicit Information Flow  

Fig. 8. TaintMan can successfully detect privacy leakage via explicit information flow and implicit information flow.

will send an attachApplication request to AMS (Step 5). As
response, the information about the target application and
the target component is sent to the forked process via two
synchronous messages (Step 6), which will be handled in
sequence. Next, the target application is instantiated (Step
7) to execute the class initialization method (Step 8) and the
onCreate() method (Step 9) of the Application class. Finally,
the target component is launched (Step 10) 7.

In practice, manufacturers often modify some aspects of
Android. However, as a fundamental feature of Android,
the application startup process is most likely to remain un-
changed. According to our empirical evaluation on a variety
of devices from prevalent manufacturers (e.g., Samsung, LG,
Motorola, HUAWEI, etc.) and most popular custom ROMs
(e.g., CyanogenMod, MIUI, etc.), we found that none of their
customizations modify the application startup process.

The environment reconstruction procedure is invoked
between Step 8 and Step 9. After Step 8, the customized
Application class RHApplication is instantiated to perform
Step a and Step b. Step a: store the target component infor-
mation. The target component information will be discarded
when the execution environment is reset. Thus, we store it
in a temporary file. Step b: execute the RHZygote program
file. It is done by making a native exec() call to completely
replace the current process with the RHZygote program.
As such, the current program state of the target application
is reset. Particularly, the reference of the target application
to the original system class libraries is cut off. The RHZy-
gote program performs Step c to Step e to prepare a new
execution environment. Step c: set environment variables.
Specifically, the BOOTCLASSPATH environment variable is
set to specify the instrumented system class libraries as the
default class paths. Step d: start a new runtime instance.
The new runtime instance will load system class libraries
from the paths specified by the aforementioned environ-
ment variable. Step e: restart an application thread. The
restarted application thread will interact with AMS to reload
the target application and instantiate its RHApplication

7. The onCreate() method of an Activity, a Service or a Broadcast
Receiver is called after the onCreate() method of the Application class. For
a Content Provider, its onCreate() method is called before the onCreate()
method of the Application class, but after the class initialization method
of the Application class.

class for a second time (Step f to Step h). At this time,
RHApplication performs Step i to obtain the information
of the target component from the temporary file. Finally, the
target application will finish the initialization at Step 9 and
launch the target component for execution at Step 10.

5 EVALUATION

We have developed TaintMan and successfully deployed it
on two prevalent devices. One is HTC One S (Android 4.0.4,
Dalvik). The other is Motorola Moto G (Android 5.0.2, ART).

5.1 Effectiveness Evaluation
The effectiveness evaluation is performed with three sets of
applications. The first set is malware samples selected from
the Android Malware Genome Project dataset [14]. This
malware dataset contains 49 malware families, of which 26
are known to steal user‘s private information [4]. To seek a
trade-off between the test coverage and the test effort, we
randomly select 20 samples from each malware family (if
it has), generating 150 malware samples. The second set is
real-world applications collected from the official Android
market (i.e., Google Play [15]), the HTC vendor‘s market
(HTC Store [16]), and two third-party markets (App China
[17] and Slide Me [18]). From each market, we select 25
recently released free applications from the global popular-
ity list, generating 100 application samples. The third set
contains nine proof-of-concepts (PoCs) from our prior work
[11] and two real-world malware samples that leverage IIF.
As a comparison, we also deploy TaintDroid on the emula-
tor. For each tested target, we execute it in both TaintMan
and TaintDroid. We should note that both TaintMan and
TaintDroid do not distinguish benign privacy leakage (i.e.,
necessary for normal functionalities) from malicious privacy
leakage, and treat any privacy leakage as suspicious.

5.1.1 Privacy Leakage Detection in Malware Samples
TaintMan report that all of the 150 malware samples leak
user‘s private information. Among them, 84 samples are
found to leak more than one kind of private infromation.
IMEI+PN is the most common combination of private in-
formation leaked by the malware samples. We use Taint-
Droid to confirm the detection results of TaintMan, and
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found that none of them is false alarm. We should highlight
the detection of three malware samples from the Droid-
KungFu3 family. The privacy-breaching behavior of these
samples will not be triggered in the emulator. Specifically,
they obtain the IMEI string of the infected device, and
decide whether to send it to a remote server by judging
whether the IMEI string is all 0‘s (which means it is running
in an emulator). Fortunately, when the three samples are
analyzed by TaintMan deployed in the real device, their ma-
licious behaviors are triggered and can be detected. We list
the detailed detection result in the supplemental material
MalwareDetection.pdf.

5.1.2 Privacy Leakage Detection in Real-World Apps

Among all the 100 real-world applications, 51 are found
to leak at least one kind of private information, of which
47 are detected by both TaintMan and TaintDroid. The rest
four applications are detected only by TaintMan and cannot
be executed in the TaintDroid environment. We manually
analyzed the four applications and found they indeed access
private information (i.e., invoking the corresponding APIs)
and send them to a remote server (which are captured
by Tcpdump [24]). Take one of them, Write on Pictures,
as an example. As shown in Fig. 8 (a), we can see that
the application actually leaks the IMEI number of the vic-
tim‘s device to a remote server. The potentially malicious
behavior is successfully detected by TaintMan. We should
highlight that besides the four applications that cannot run
on TaintDroid, there are two applications that can run on
TaintDroid only when the JIT compilation mode is disabled.
It is probably caused by the incompatibility due to mod-
ification of the underlying system. The issue is shared by
the existing dynamic instrumentation approaches [7], [8].
We list the detailed detection result in the supplemental
material ApplicationDetection.pdf.

5.1.3 Implicit Information Flow Detection

The nine PoCs of our prior work [11] have been developed
based on a (potentially malicious) game application FMajor
[25]. During execution, FMajor obtains the host device‘s
phone number, propagates it via explicit information flow
(e.g., assignments), and finally sends it out via Internet.
We modify the procedure of phone number transmitting,
inserting an additional transformation step. This step em-
ploys a certain IIF form to transform each character of the
phone number string. After the transformation step, the
transformed string will hold the same value as the original
phone number string, although it is not achieved by data
dependence but rather IIF. TaintMan can detect the privacy
leakage behaviors of all these PoCs. Fig. 8 (b) shows a
screenshot of the detection. As a comparison, TaintDroid
cannot detect these PoCs, since it ignores the implicit infor-
mation flow. We also evaluate TaintMan with two real-world
malware samples from the DroidKungFu3 and AnserverBot
family that leverage IIF 8. TaintMan can successfully detect
the privacy leakage behaviors.

8. The DroidKungFu3 malware sample (MD5: 1d908963aa08e2651908
17f88bb3ae3c) leverages IIF to encode the ICCID string. The AnserverBot
malware sample (MD5: c7d856feaab717913889e175105873cd) leverages
IIF to encode the IMEI string.
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Fig. 9. Performance evaluation with CaffeineMark.

5.2 Performance Evaluation

5.2.1 Evaluation with Standard Benchmark
We use CaffeineMark [26] to evaluate the performance over-
head of TaintMan. CaffeineMark is a famous benchmark,
which uses a series of tests to measure the performance
of Java programs and represents it as scores. These scores
roughly correlate with the number of instructions executed
per second. For concise illustration, here we only present the
performance evaluation on the Motorola Moto G.

First, we evaluate the performance improvement by the
refined taint logic. In this evaluation, we disable on-demand
instrumentation and on-demand tracking optimizations,
and measure the instrumentation impact of the binary-op
instructions and the iput-op instructions individually. We use
the Loop test of CaffeineMark as a metric, which contains
binary-op and iput-op instructions in around 2048 iterations.
Before refining, all binary-op and iput-op instructions are
instrumented as in the worst case (i.e., Case 9 of Table 2 and
Case 3 of Table 3). The performance improvements are 11%
for binary-op instructions (11704 before refining v.s. 12992
after refining) and 6% for iput-op instructions (22141 before
refining v.s. 23470 after refining).

Then, we evaluate the performance improvement by op-
timizations. The evaluation result is shown in Fig. 9. We can
see that the overall performance overhead incurred by data
dependence and strict control dependence tracking is 42.3%
(13689 before instrumentation v.s. 7898 after instrumenta-
tion without optimization). The on-demand instrumentation
alone improves the performance by 9.4% (7898 before en-
forcing on-demand instrumentation v.s. 8641 after enforc-
ing). The combination of on-demand instrumentation and
on-demand tracking improves the performance by 23.3%
(7898 without optimization v.s. 9737 with optimizations).
After optimization, the performance overhead is acceptable
for analysis purpose.

5.2.2 Evaluation with Real-World Applications
We choose 10 real-world applications of different categories
to evaluate the impact of TaintMan on the interactive appli-
cations. We use application load time delay, Activity launch
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time delay and user input response delay as metrics. The
result shows TaintMan incurs 980 ms application load time
delay, 320 ms Activity launch time and 170 ms user input
response delay. That means TaintMan has no noticeable
interference on the interactive behaviors of applications.

We also evaluate the space overhead of TaintMan. We
measure the sizes of the 10 real-world applications and the
sizes of system class libraries of HTC One S and Motorola
MOTO G before and after instrumentation respectively. The
result shows that the instrumentation process only increases
the application size by 23% (4.0 MB avg. v.s. 4.9 MB avg.). In
addition, the instrumentation process approximately triples
the total size of system class libraries (15.8 MB v.s. 42.7
MB for HTC One S, 50.7 MB v.s. 127.3 MB for Motorola
MOTO G). Since system class libraries are shared by all
instrumented applications and the size increment is rela-
tively small compared with the large pool of applications,
we argue the size overhead is acceptable.

6 DISCUSSION

Compatibility with ART. The instrumentation of TaintMan
is conducted at the bytecode level. The way we allocate
taint tag storage and enforce taint propagation logic ensures
the instrumented code to be valid as if it were generated
normally from Java source code. For example, the allocation
of tag taint for field f is equivalent to defining a new
field f ′ in the class. The tracking code for field access
instruction on field f is equivalent to executing another
field access instruction on field f ′. For on-demand tracking,
the two versions of bytecode act as two branches of the
operation checking whether any parameter is tainted. They
are wrapped to have a single entry and a single exit, just like
a normal method (see Fig. 6). Such instrumentation is trans-
parent to the underlying mechanism (e.g., optimizations) of
the ART compiler and will not be affected even if the ART
compiler is updated in the future.

Instrumentation at Bytecode Level. Dynamic taint analysis
can be implemented at different levels, including source-
level, runtime-level, library-level and bytecode-level [27]. In
TaintMan, we choose to implement the instrumentation at
the bytecode level. The reasons are as follows. First, for a
majority of real-world applications, we can only get their
bytecode, hence cannot implement the instrumentation at
the source level that requires source code. Second, we expect
TaintMan to be easily deployable on real devices, hence
cannot implement the instrumentation at the runtime level
that requires modifying or rooting devices. Third, sensitive
data can be propagated via system libraries as well as the
target application code, hence it would be insufficient if we
only implement the instrumentation at the library-level.

Handling Dynamically Loaded Code. Android provides
the dynamic loading mechanism to allow applications to
load the Dalvik bytecode at runtime. TaintMan-like static-
instrumentation-based DTA approaches fall short in han-
dling dynamically loaded code. To mitigate, we wrap the
dynamic loading APIs, such as DexFile.openDexFile(), to al-
low the analysts to obtain the original bytecode file to be
loaded and specify an instrumented counterpart (generated
off-line) as the substitute of the original bytecode file. In

the future, we plan to port the instrumentation process into
smartphone device, so that the dynamically loaded code can
be instrumented on-the-fly.

Handling Integrity Checking. When an application is in-
strumented, its integrity is inevitably destroyed. Some ap-
plications may validate the integrity of their packages at
runtime. For such applications, extra efforts need to be
taken to bypass the integrity checking. In theory, complex
anti-reverse-engineering would make the integrity checking
robust against bypassing. However, our preliminary study
on the integrity checking mechanism of real-world appli-
cations shows that the most common ways to validating
the integrity of an application are examining its signature
by querying from the Package Manager Service (PMS) via
inter-process communication (IPC) calls, and examining the
checksums of some critical files (e.g., the digest file MANI-
FEST.MF) by invoking the corresponding framework APIs.
Since reference hijacking allows us to take full control over
the reference of the target application to the underlying
system libraries, we can redirect these IPC calls and APIs,
so that a forged value will be returned as if the operations
were carried on the original application package. As such,
we can bypass the integrity checking.

Combining Reference Hijacking with Boxify. Reference
hijacking requires to repackage the target application, hence
suffers from issues with re-signing applications (e.g., no
backward-compatibility with already stored data). An ideal
way to avoid the problem is to combine reference hijacking
with a very recent work, Boxify [28]. Boxify leverages the
isolated process feature of Android to make the target
application run in a monitored sandbox. The reference hi-
jacking technique can be introduced in the isolated process
to construct a new sandbox environment for the monitored
application, making it run on top of security-enhanced un-
derlying system libraries. We believe that the combination
of reference hijacking and Boxify can extend the capability
of both of them, and will create a wonderful solution for
securing Android applications. We have begun to research
how to leverage Boxify to further improve the practicability
of the reference hijacking technique.

Extensibility to End Users. TaintMan is originally designed
for analysts to track the sensitive information flow in An-
droid applications. It overcomes a lot of problems that have
affected wide-spread deployment. With some additional
efforts, it could be extended to be more friendly to end users.
For example, we can port the instrumentation component of
TaintMan to the smartphone device to get rid of the off-line
instrumentation step, as done in [29]. We can further extend
TaintMan to declassify sensitive data automatically, rather
than simply raising alarms, as done in [30].

Soundness of Implicit Information Flow Tracking. The
lazy tainting policy for IIF tracking improves not only
performance, but also precision. Consider the code snippet
“public = 0; if (secret != 0) public = 1;”. Variable public is
initialized to 0. At runtime, if the false branch is taken (i.e.,
secret == 0), publicwill not be assigned. As a result, the taint
of predicate variable secret will not be directly propagated
to public. If we adopt the on-the-fly tainting policy, the
dependence of public on secret could not be captured due
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to the execution omission. This issue can be addressed if
we adopt the lazy tainting policy. By postponing tainting to
the post-dominator of a control structure, we can have clear
information about the assignments of variables in different
branches via observing their Φ function. In the aforemen-
tioned example, variable public is attached with a Φ function
listing two versions: one indicates that public takes a new
value along the true branch, and the other indicates that
public remains the same with its initialized value along
the false branch. Given the assignment information, we can
precisely propagate the taint of secret to public even if no
assignment is executed at the false branch.

Currently, our IIF tracking algorithm only focuses on
strict control dependence caused by equivalence testing (i.e.,
‘==’ or ‘!=’), which is the common case we found in in-the-
wild malware. We do not take into account the domain of a
variable, which could also induce strict control dependence.
Consider the code snippet “if (secret >1) public = 1;”. If
variable secret can only ever have the values -2, 0 and 3
(for whatever reasons), then the value of variable public
(i.e., 1) precisely determine the value of secret (i.e., 3).
Identifying such strict control dependence requires the help
of constraint solvers at the cost of performance overhead.

So far, our IIF tracking algorithm only tracks the inner-
most strict control dependence. To support tracking nested
strict control dependence, a stack of implicit flow labels
should be maintained: the taint label is pushed into the stack
when encountering a predicate statement and popped out
when encountering the post-dominator. This would have a
high performance impact. Since we have not yet found An-
droid malware leveraging nested strict control dependence,
we only track the innermost strict control dependence for
performance consideration.

7 RELATED WORK

On the Android platform, many approaches have been pro-
posed based on DTA. TaintDroid [6] and DroidScope [7] are
the two representative works. TaintDroid provides a real-
time system-wide information-flow tracking by instrument-
ing the Dalvik virtual machine interpreter, making it gener-
ate taint enforcement code for the executed instructions at
runtime. Many malware detection systems (e.g, AppFence
[8] and DroidBox [9]) are derived from TaintDroid. Since the
latest Android system introduces ART as a substitute of the
DVM runtime, the interpreter-instrumentation-based solu-
tions are not applicable anymore. DroidScope instruments
the Android emulator, rather than modifying the Dalvik
interpreter. Although compatible with ART, it is limited in
analyzing applications in the emulator, not in real devices.

Some state-of-the-art DTA approaches have paid atten-
tion to the ART runtime. DroidForce [31] uses instrumenta-
tion to enforce policies including data flow on unmodified
phones. It only tracks inter-component flows dynamically
and relies on statically pre-computed data flow tables for
intra-component tracking. ARTist [23] and TaintART [32]
add the taint enforcement code by modifying the optimizing
backend used by the ART compiler for code generation.
Their instrumentations are performed on the device, which
requires rooting to deploy the instrumented ART compiler.

Recent years, attentions are paid to the deployability of
security analysis approaches. Some attempts are made to
enforce application-wide security features without flashing
or rooting devices. For example, Aurasium [33] enforces
a fine-grained permission policy. The global offset table
(GOT) of the target application process is rewritten, such
that calls to critical libc functions can be intercepted and
validated. Boxify [28] proposes a novel technique to en-
force privilege separation policies. Untrusted applications
are securely encapsulated in an isolated sandbox, such that
inter-process communications and system calls of the un-
trusted applications can be mediated. Although these two
approaches do not require modification of the underlying
system, their capabilities are limited to enforcing function-
call-level protection policies.

Styp-Rekowsky et al. [34] proposed a technique similar
to reference hijacking. Their approach diverts the control
flow towards the security monitor by modifying references
to security-relevant methods in the Dalvik virtual machine,
which does not require restarting the complete execution
environment. This approach would incur minimal runtime
overhead if the amount of security-relevant methods is
small. For dynamic taint analysis, there are a considerable
number of system methods needed to be tracked. Diverting
all these method calls would take longer time than restarting
the complete execution environment.

8 CONCLUSION

In this paper, we present TaintMan, an ART-compatible
dynamic taint analysis framework that can be conveniently
deployed on unmodified and non-rooted Android devices.
With TaintMan, taint enforcement code is statically instru-
mented into both the target application and the system class
libraries to track data flow and common control flow. A spe-
cially designed execution environment reconstruction pro-
cedure is introduced to force the target application to refer-
ence the instrumented system libraries. To improve the per-
formance, we perform several optimizations. Specifically,
we enforce on-demand instrumentation and on-demand
tracking to avoid unnecessary taint analysis whenever pos-
sible. In addition, we design efficient taint tag storage and
refine taint propagation logic to implement taint tracking
with as little code as possible. We evaluate TaintMan with
malware samples and real-world applications. The eval-
uation result shows that TaintMan can effectively detect
privacy leakage behaviors. In addition, the performance
overhead of TaintMan is acceptable for analysis purposes.
We believe that TaintMan is a practical DTA framework
applicable for the latest Android system on real devices.
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